3y2=15y2-144

Simple and best practice solution for 3y2=15y2-144 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y2=15y2-144 equation:



3y^2=15y^2-144
We move all terms to the left:
3y^2-(15y^2-144)=0
We get rid of parentheses
3y^2-15y^2+144=0
We add all the numbers together, and all the variables
-12y^2+144=0
a = -12; b = 0; c = +144;
Δ = b2-4ac
Δ = 02-4·(-12)·144
Δ = 6912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6912}=\sqrt{2304*3}=\sqrt{2304}*\sqrt{3}=48\sqrt{3}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{3}}{2*-12}=\frac{0-48\sqrt{3}}{-24} =-\frac{48\sqrt{3}}{-24} =-\frac{2\sqrt{3}}{-1} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{3}}{2*-12}=\frac{0+48\sqrt{3}}{-24} =\frac{48\sqrt{3}}{-24} =\frac{2\sqrt{3}}{-1} $

See similar equations:

| 24x-12x=4=14 | | r-9/3=S | | (3x−8/2)=x−6 | | 2(3-3x-7x)+9(2x+3)=9 | | z3+1=4+z4 | | -6n+20=4n+6(3n-6) | | X/2+5x/6=1/9 | | -21+7n=7n-7(3+6n) | | 12-6n=6n-6(4n+4) | | -3(1-5a)=8a+39 | | 8(3+x)=5x+35 | | 4x+6=2x-8x+6 | | 28=12k | | x^2+9x+20=180 | | y/8+2=6 | | 6(3k+6)+8=-7k-31 | | 3(1+2k)=10-k | | 64=16t2-80t | | 10x+6=18+6x | | 25y=15y+75= | | 4(3x-2)=20+8x | | 3(8x+2)=4(6x-10 | | -37-8a=3(-7-4a) | | 10(x-2)=-20= | | -(x+8)=-6-2x | | m+7=3+m+4= | | 1300-25n=300 | | 44()=5​d | | 4x+2x-4=2x+8 | | 1+8x=-8x+7(3+3x) | | 10m=10-5(m-)= | | x/7=9/6 |

Equations solver categories