3y2=24

Simple and best practice solution for 3y2=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3y2=24 equation:



3y^2=24
We move all terms to the left:
3y^2-(24)=0
a = 3; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·3·(-24)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*3}=\frac{0-12\sqrt{2}}{6} =-\frac{12\sqrt{2}}{6} =-2\sqrt{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*3}=\frac{0+12\sqrt{2}}{6} =\frac{12\sqrt{2}}{6} =2\sqrt{2} $

See similar equations:

| (10x-40)+(9x-12)=119 | | -22/9=-4/5m | | -1.2=0.2x-7 | | (2z-27)+(5z-28)+(2z-26)=180 | | 3x-12=2(x+3)+x | | 11x+36=8x | | 2x-27+8x=21+8x | | 3(3y-4)=-26 | | 0.50(50)+60=130n | | 40+(y-14)+(2y-7)=180 | | x/6+15=20 | | 30+(2c-43)+(3c+8)=180 | | 15-7/10x=8 | | -4.5=-0.5(x-7.1$ | | 7/15x-2/5=4 | | 2/8t=-1/4 | | 1/22=4s-21 | | X+1/2=b | | -10x-15x+5=45+20 | | 8/10=24n | | 2/3(9y-6)=26 | | 0.15x+35=0.25x+20 | | -5x+12x-8x`=-24 | | 5a+2a+(5a-36)=180 | | (8x-6)/3+(6x+3)/9=25 | | 5u+3=7u | | -14y=-42.9 | | 5-p=4p-5 | | -8x+2x-1=-5x+7x | | (3c+5)+(c+14)+(4c-7)=180 | | 2x+5(-8-7x)=-7 | | 5/2x-7=3/2x+7/2 |

Equations solver categories