If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=300
We move all terms to the left:
3y^2-(300)=0
a = 3; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·3·(-300)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*3}=\frac{-60}{6} =-10 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*3}=\frac{60}{6} =10 $
| |5x-6|=|6x-8| | | 15x-8=2(4x+6) | | 3(x-0.87)-2x=4.98 | | 4y-5y=-8 | | 44+(10+a)=2a | | . 61=3x+4x+5 | | 2/5g+7=15 | | 4(2+3x)=3(2x-4) | | 39=1.3bb= | | 4(5c-1)-2=18c+8 | | x/6+6=6 | | 6x+2-44=0 | | 9x-3=2(4x-4) | | 1/6y=1/42 | | (5x-7)^(1/3)+3=5 | | 4x-x+3=-2+18 | | 4x+17-3x=-6-12 | | 3m+3=14 | | 19.1=2.5d+14.1 | | 19.1=2.5d=14.1 | | 7x+6=3(2x+3) | | 13=2x+27 | | (x+6)(x+12)-x(x+6)=252 | | 35=x/5+10 | | 15y+5=15y= | | 7.4-1.5y=2.6+0.1y | | 10+v–17v=4 | | 7x-12=90 | | 84=4h+48 | | w/2-13=14 | | 18=3/7v | | 1350=5x |