If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2=75
We move all terms to the left:
3y^2-(75)=0
a = 3; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·3·(-75)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*3}=\frac{-30}{6} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*3}=\frac{30}{6} =5 $
| 5x+3=-9x-11+7x | | 9+b/5=14 | | Y-8y=41 | | 7g-5g-g=10 | | 6x+11=-49-4 | | 18k+2k+k-18k-k=14 | | 7x-4+100=180 | | 3(5+7x)=30=6x | | w^2+35w-150=0 | | 9(u-2)+2u=4 | | 10x+8=3x | | 90+3x+21=180 | | 3n+13=9n-17 | | 9x=184=7x=156 | | 65=m7 | | 3r-r=16 | | 20=(40-2.5r)/0.5 | | 3(2x+7)=-15+18 | | 10y-7=6y-5 | | 9z-16z+-8z=-20 | | m=76 | | 6t-4t=14 | | 17=c=3 | | 20g-11g=9 | | 10k^2-97=3k+659 | | 2(y-2)+3(y-2)=0 | | n9=7 | | 0.5(2a-10)=8 | | 0.7=0.3+x-0.15 | | 767=m | | -6=2/n-10 | | a-24=30 |