3z(z+2)=3z*3z+6z-1

Simple and best practice solution for 3z(z+2)=3z*3z+6z-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3z(z+2)=3z*3z+6z-1 equation:


Simplifying
3z(z + 2) = 3z * 3z + 6z + -1

Reorder the terms:
3z(2 + z) = 3z * 3z + 6z + -1
(2 * 3z + z * 3z) = 3z * 3z + 6z + -1
(6z + 3z2) = 3z * 3z + 6z + -1

Reorder the terms for easier multiplication:
6z + 3z2 = 3 * 3z * z + 6z + -1

Multiply 3 * 3
6z + 3z2 = 9z * z + 6z + -1

Multiply z * z
6z + 3z2 = 9z2 + 6z + -1

Reorder the terms:
6z + 3z2 = -1 + 6z + 9z2

Add '-6z' to each side of the equation.
6z + -6z + 3z2 = -1 + 6z + -6z + 9z2

Combine like terms: 6z + -6z = 0
0 + 3z2 = -1 + 6z + -6z + 9z2
3z2 = -1 + 6z + -6z + 9z2

Combine like terms: 6z + -6z = 0
3z2 = -1 + 0 + 9z2
3z2 = -1 + 9z2

Solving
3z2 = -1 + 9z2

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '-9z2' to each side of the equation.
3z2 + -9z2 = -1 + 9z2 + -9z2

Combine like terms: 3z2 + -9z2 = -6z2
-6z2 = -1 + 9z2 + -9z2

Combine like terms: 9z2 + -9z2 = 0
-6z2 = -1 + 0
-6z2 = -1

Divide each side by '-6'.
z2 = 0.1666666667

Simplifying
z2 = 0.1666666667

Take the square root of each side:
z = {-0.408248291, 0.408248291}

See similar equations:

| 7-y=-5 | | 109+6k=619 | | (6-2y)-3y= | | 0.4x=6.4 | | log(6)(x)-log(6)(1-x)=9 | | 5p+2=1-4p | | 4(x+1)+2=5+2(x-1) | | 3t+5a-2t= | | a(10)=20t+50 | | x-7=3x-33 | | 1-3n=6n+8(7-8n) | | 0.6x-7.5= | | (-5+f)=-3 | | 6x-9=6x+5 | | 3(1)+2y+2=-21+7y-1 | | 3y+27=5y-3 | | 5(x+3)-4x=-21 | | 3.8-3=1.4n+5 | | 2(10x+5)=7(8-2x) | | 8(3x+7)=-112 | | 4+v=1-2v | | 11x-32=8x+4 | | 0=-4.9x^2+x | | a(t)=20t+50 | | .4x+3.1=.8x-.5 | | 12x(x^2-4x+3)=0 | | 6x+4x-16=64-6x | | 11x-25=7x+31 | | (2x+9)=(3x-21) | | -2x+-4-x=-17 | | 9x-13=x+25 | | (9a)(5a)(2a)= |

Equations solver categories