If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z(z-10)(z+10)=0
We use the square of the difference formula
z^2-100=0
a = 1; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·1·(-100)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*1}=\frac{-20}{2} =-10 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*1}=\frac{20}{2} =10 $
| 3z(z-10)+(z+10)=0 | | 9^x-1=64 | | 3x-(1/2)=-5 | | 1300=1100^y | | 5(y−8)−5=−6(−4y+8)−7y | | 8k-10=142 | | n/3+2=-1 | | 40+5x=70 | | -6p+27=9 | | -10=b/15-9 | | -59+10x=-49 | | 9x-4=2(x+30 | | -37=8+3r | | x÷4=30 | | 13+4(2n-11)=1 | | 3+a/2=8 | | 3(x-4)=-6-12 | | 2(x-5)=-7-5 | | 9a+23=-4 | | 3n-3=-27 | | 4t-1=4t+25 | | 4t+4=5t+25 | | 25-13=4x-20 | | 6(x)=-4x+2 | | -7y-14=7 | | 38(38-5.5x)=14(5x-8)+21.5 | | 3x-1=15.5 | | -3t/t+6=0 | | 1/2n=3/20 | | 6x−18=4x+23 | | 30(40-4.5x)=13(4x-7)+38.1 | | 5(x-2)-9=3x+9 |