If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+6z-5=0
a = 3; b = 6; c = -5;
Δ = b2-4ac
Δ = 62-4·3·(-5)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{6}}{2*3}=\frac{-6-4\sqrt{6}}{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{6}}{2*3}=\frac{-6+4\sqrt{6}}{6} $
| X=-4(-29-4x)-4 | | 0.6+1.2-3x=0.8+0.5 | | 2k+9=7−3k | | 2/3(x-6)=48 | | 1/4g+8=10 | | 2y+4+5y-8=24 | | (2x+10)+(x-10)=90 | | -(2x+1)+2=15 | | 0.05x+0.1=0.25x-0.3 | | -10x+7=-21 | | k/4+6=(-2) | | (2/3)((1/2)x-4)=(6/5)x+(2/3) | | -3+2/3(6n-42)=-51 | | 6c-8-8c=16- | | 4^(2x-5)=62 | | 6x+1=6(1-x) | | 45=18+t | | |3x-8|-9=-5 | | -10e+15=95-3e | | 3/2b=-141/2 | | 1000=10x-2 | | 0.4x=4.8 | | -7(2b-4=5(-2b+6) | | 4n+26=-2 | | -6n-2n=+6 | | 6x-5-3x=-17 | | 8v^2-34v+29=0 | | 2z+(5z-3)=18 | | 6(x+4)=2(x-7)+10 | | 5d-8=(-22) | | 1.8x+3.7x=33 | | 5/6d=5/15 |