If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-384=138
We move all terms to the left:
3z^2-384-(138)=0
We add all the numbers together, and all the variables
3z^2-522=0
a = 3; b = 0; c = -522;
Δ = b2-4ac
Δ = 02-4·3·(-522)
Δ = 6264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6264}=\sqrt{36*174}=\sqrt{36}*\sqrt{174}=6\sqrt{174}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{174}}{2*3}=\frac{0-6\sqrt{174}}{6} =-\frac{6\sqrt{174}}{6} =-\sqrt{174} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{174}}{2*3}=\frac{0+6\sqrt{174}}{6} =\frac{6\sqrt{174}}{6} =\sqrt{174} $
| 9x-17=17-8 | | 6x+6x=12x^2 | | 8y+4=45 | | 4b-b=36 | | -z+8=5z+9+1 | | -10+16=x | | -5/3x-4=4/4x-5 | | 19x+(-7)=-25+10x | | -8(10+b)-2b=-34+3b | | 4z+2=z+20 | | (5−8i)−(−6−11i)=0 | | 10x+13=3x-36 | | 5(2x)+3(2x)=6 | | 2-4x=5x-7 | | 56/y+5=`3 | | 5x=×+12 | | 0.72-0.16x=0.40 | | 4(2x+9)5x=-3 | | 14x-3-11×=12 | | 5.7x-4=0.5 | | 1.08(1.24)(9-x)=10 | | 25+3x=12 | | 2x+3-4x=4x-1-4x | | 45-6a=-3(9-7) | | 9i-10=6i | | x=×-10 | | 35x-20=15 | | (3x-2X)+x=240 | | 2x+3-4x=-1 | | 6x*10=15 | | 5/3-z=1/2 | | 1/2=z-5/3 |