If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2-4z-15=0
a = 3; b = -4; c = -15;
Δ = b2-4ac
Δ = -42-4·3·(-15)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-14}{2*3}=\frac{-10}{6} =-1+2/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+14}{2*3}=\frac{18}{6} =3 $
| 6=-2(c+7) | | 29=j18 | | 4y=-2y+30 | | 2a=-5 | | 8+v=1 | | 3/4(4x–8)=18 | | 4(4x–8)=18 | | 8-2(4x-3)-5+7x=12+2x-7 | | 4b+6=-7 | | 35k=9 | | a÷2+5=9 | | 2+k÷3=5 | | -7x+6(2x+2)=37 | | 8(-1+m)+3=2(m-5/12) | | 12=-6x-3(-3x+4) | | 8x18=2 | | |n+6|=4 | | |2x-5|=29 | | 2a-2=-5 | | |-8n+4|=36 | | 5x-25x^2+10=-15x^2-10x^2-15 | | -7x+2(7x+3)=48 | | (9x+72)=90 | | (8x)+(x+27)=180 | | -8u-5=4 | | 9x+4=2x-4 | | r/2+20=-1-2r/3 | | 7x+6(-x-4)=-12 | | (q-8)5=10 | | x-20=5(2x+3)-8 | | 8u+9=4 | | 15=-3x-3(-2+3) |