If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2=108
We move all terms to the left:
3z^2-(108)=0
a = 3; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·3·(-108)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*3}=\frac{-36}{6} =-6 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*3}=\frac{36}{6} =6 $
| 5x/12=5x/6-5 | | 5n-8n-7+3=3 | | 15+14n-3n-27=109 | | 3x+5=767 | | 19n-11n+4n=32 | | 4x+20=x-4 | | 2x+3=915 | | 3(x-5)=8x=18-(3-10x) | | 3^7x+3=3^24 | | 6(m-5)=2(m-29) | | 41+14n-n=119 | | 6(m-5)=2(m-29 | | -11(y-2)+6y=3(y+4)+2 | | |3m+5|=8 | | -1(y-2)+6y=3(y+4)+2 | | 4x+10=502 | | 2x^2−1=0 | | 2x2−1=0 | | 25x=5x+1000 | | x+64=103 | | 18=2l+×(5) | | X^2-4.9x+2.8=0 | | 18-9n-3n+32=64 | | 2x-3=351 | | 10y=7y=-6 | | (4x/x-2)+(2/x)=5 | | 8+10=-24n+7 | | -3/8m=8 | | -7-x=52 | | 5x-6=66+2x | | –6b−15=–5b | | 4x8=24 |