If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2=9
We move all terms to the left:
3z^2-(9)=0
a = 3; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·3·(-9)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3}}{2*3}=\frac{0-6\sqrt{3}}{6} =-\frac{6\sqrt{3}}{6} =-\sqrt{3} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3}}{2*3}=\frac{0+6\sqrt{3}}{6} =\frac{6\sqrt{3}}{6} =\sqrt{3} $
| 20y-3=11y+8 | | 18y-6=2y+8 | | 12y-4=4y+3 | | 6x-12=2(x+2 | | 2(5x-15)=5x+5 | | (x+1)^2=-4 | | 21-5x=53-9x | | -2d=-4 | | y=900+0.5y | | y=900+0.05y | | (6y+29)+(8(0.75y+18.75)+1)=180 | | x^-13x=-40 | | (x+8)^=0 | | 2x^+15x-108=0 | | 5c+3c=0 | | 7x-1=170 | | x/3+11=1 | | x/4-21=4 | | -7-7n=-9(n+3) | | 12p=40 | | 7x-40+9x+6+8x-6=180 | | 8w=43-7 | | 8x-20+5x+2+7x-4=180 | | 4(3a+5)=7(4-a) | | 2(2x-3)+3(4x+6)=44 | | 2(2x-3)+3(4x+6)=52 | | 4x+x-5=2x-3x+19 | | 3(4x+6)-2(5x+4)=32 | | 5(m-7)=25 | | 4(2x+3)-2(x+6)=42 | | 9y-60=120 | | 12m+50=70 |