4(1-3n)-14=4(2n+3)9n

Simple and best practice solution for 4(1-3n)-14=4(2n+3)9n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(1-3n)-14=4(2n+3)9n equation:


Simplifying
4(1 + -3n) + -14 = 4(2n + 3) * 9n
(1 * 4 + -3n * 4) + -14 = 4(2n + 3) * 9n
(4 + -12n) + -14 = 4(2n + 3) * 9n

Reorder the terms:
4 + -14 + -12n = 4(2n + 3) * 9n

Combine like terms: 4 + -14 = -10
-10 + -12n = 4(2n + 3) * 9n

Reorder the terms:
-10 + -12n = 4(3 + 2n) * 9n

Reorder the terms for easier multiplication:
-10 + -12n = 4 * 9n(3 + 2n)

Multiply 4 * 9
-10 + -12n = 36n(3 + 2n)
-10 + -12n = (3 * 36n + 2n * 36n)
-10 + -12n = (108n + 72n2)

Solving
-10 + -12n = 108n + 72n2

Solving for variable 'n'.

Combine like terms: -12n + -108n = -120n
-10 + -120n + -72n2 = 108n + 72n2 + -108n + -72n2

Reorder the terms:
-10 + -120n + -72n2 = 108n + -108n + 72n2 + -72n2

Combine like terms: 108n + -108n = 0
-10 + -120n + -72n2 = 0 + 72n2 + -72n2
-10 + -120n + -72n2 = 72n2 + -72n2

Combine like terms: 72n2 + -72n2 = 0
-10 + -120n + -72n2 = 0

Factor out the Greatest Common Factor (GCF), '-2'.
-2(5 + 60n + 36n2) = 0

Ignore the factor -2.

Subproblem 1

Set the factor '(5 + 60n + 36n2)' equal to zero and attempt to solve: Simplifying 5 + 60n + 36n2 = 0 Solving 5 + 60n + 36n2 = 0 Begin completing the square. Divide all terms by 36 the coefficient of the squared term: Divide each side by '36'. 0.1388888889 + 1.666666667n + n2 = 0 Move the constant term to the right: Add '-0.1388888889' to each side of the equation. 0.1388888889 + 1.666666667n + -0.1388888889 + n2 = 0 + -0.1388888889 Reorder the terms: 0.1388888889 + -0.1388888889 + 1.666666667n + n2 = 0 + -0.1388888889 Combine like terms: 0.1388888889 + -0.1388888889 = 0.0000000000 0.0000000000 + 1.666666667n + n2 = 0 + -0.1388888889 1.666666667n + n2 = 0 + -0.1388888889 Combine like terms: 0 + -0.1388888889 = -0.1388888889 1.666666667n + n2 = -0.1388888889 The n term is 1.666666667n. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667n + 0.6944444447 + n2 = -0.1388888889 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667n + n2 = -0.1388888889 + 0.6944444447 Combine like terms: -0.1388888889 + 0.6944444447 = 0.5555555558 0.6944444447 + 1.666666667n + n2 = 0.5555555558 Factor a perfect square on the left side: (n + 0.8333333335)(n + 0.8333333335) = 0.5555555558 Calculate the square root of the right side: 0.745355993 Break this problem into two subproblems by setting (n + 0.8333333335) equal to 0.745355993 and -0.745355993.

Subproblem 1

n + 0.8333333335 = 0.745355993 Simplifying n + 0.8333333335 = 0.745355993 Reorder the terms: 0.8333333335 + n = 0.745355993 Solving 0.8333333335 + n = 0.745355993 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + n = 0.745355993 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + n = 0.745355993 + -0.8333333335 n = 0.745355993 + -0.8333333335 Combine like terms: 0.745355993 + -0.8333333335 = -0.0879773405 n = -0.0879773405 Simplifying n = -0.0879773405

Subproblem 2

n + 0.8333333335 = -0.745355993 Simplifying n + 0.8333333335 = -0.745355993 Reorder the terms: 0.8333333335 + n = -0.745355993 Solving 0.8333333335 + n = -0.745355993 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + n = -0.745355993 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + n = -0.745355993 + -0.8333333335 n = -0.745355993 + -0.8333333335 Combine like terms: -0.745355993 + -0.8333333335 = -1.5786893265 n = -1.5786893265 Simplifying n = -1.5786893265

Solution

The solution to the problem is based on the solutions from the subproblems. n = {-0.0879773405, -1.5786893265}

Solution

n = {-0.0879773405, -1.5786893265}

See similar equations:

| 15,6/2,88=x/14 | | -4(-1+3x)=-68 | | 6x-7+3x-13= | | 7f-4-2f=31 | | 2(6-x)-(9x+2)=4+8(x-4) | | 7x-2y-5z=24 | | -1(-3x+5)=22 | | 4x+6+x=-2x+2 | | -4x-2=18+6x | | -9(7+5h)=15 | | n=12+2m | | (4x+1)(2x-2)=8x(x+5) | | -2x-2=3x-22 | | 20=2n+6 | | n=12+2n | | 6x-6=71-x | | 3n=36-6m | | -10=x+2x-7 | | -2(19-8t)=18 | | X/5.1 | | 7x-7+3x=73 | | -5x+8+4x=6 | | x-2-2*ln(x)=0 | | s-10=20.81 | | 6k-10=14 | | 2y+15=23 | | 30m+350=25m+400 | | 6/34=t/108 | | X-4x=54 | | 18=10n | | 5y-3=47 | | 747+(-60x)=0 |

Equations solver categories