4(2+6y)3y=15

Simple and best practice solution for 4(2+6y)3y=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2+6y)3y=15 equation:


Simplifying
4(2 + 6y) * 3y = 15

Reorder the terms for easier multiplication:
4 * 3y(2 + 6y) = 15

Multiply 4 * 3
12y(2 + 6y) = 15
(2 * 12y + 6y * 12y) = 15
(24y + 72y2) = 15

Solving
24y + 72y2 = 15

Solving for variable 'y'.

Reorder the terms:
-15 + 24y + 72y2 = 15 + -15

Combine like terms: 15 + -15 = 0
-15 + 24y + 72y2 = 0

Factor out the Greatest Common Factor (GCF), '3'.
3(-5 + 8y + 24y2) = 0

Ignore the factor 3.

Subproblem 1

Set the factor '(-5 + 8y + 24y2)' equal to zero and attempt to solve: Simplifying -5 + 8y + 24y2 = 0 Solving -5 + 8y + 24y2 = 0 Begin completing the square. Divide all terms by 24 the coefficient of the squared term: Divide each side by '24'. -0.2083333333 + 0.3333333333y + y2 = 0 Move the constant term to the right: Add '0.2083333333' to each side of the equation. -0.2083333333 + 0.3333333333y + 0.2083333333 + y2 = 0 + 0.2083333333 Reorder the terms: -0.2083333333 + 0.2083333333 + 0.3333333333y + y2 = 0 + 0.2083333333 Combine like terms: -0.2083333333 + 0.2083333333 = 0.0000000000 0.0000000000 + 0.3333333333y + y2 = 0 + 0.2083333333 0.3333333333y + y2 = 0 + 0.2083333333 Combine like terms: 0 + 0.2083333333 = 0.2083333333 0.3333333333y + y2 = 0.2083333333 The y term is 0.3333333333y. Take half its coefficient (0.1666666667). Square it (0.02777777779) and add it to both sides. Add '0.02777777779' to each side of the equation. 0.3333333333y + 0.02777777779 + y2 = 0.2083333333 + 0.02777777779 Reorder the terms: 0.02777777779 + 0.3333333333y + y2 = 0.2083333333 + 0.02777777779 Combine like terms: 0.2083333333 + 0.02777777779 = 0.23611111109 0.02777777779 + 0.3333333333y + y2 = 0.23611111109 Factor a perfect square on the left side: (y + 0.1666666667)(y + 0.1666666667) = 0.23611111109 Calculate the square root of the right side: 0.485912658 Break this problem into two subproblems by setting (y + 0.1666666667) equal to 0.485912658 and -0.485912658.

Subproblem 1

y + 0.1666666667 = 0.485912658 Simplifying y + 0.1666666667 = 0.485912658 Reorder the terms: 0.1666666667 + y = 0.485912658 Solving 0.1666666667 + y = 0.485912658 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.1666666667' to each side of the equation. 0.1666666667 + -0.1666666667 + y = 0.485912658 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + y = 0.485912658 + -0.1666666667 y = 0.485912658 + -0.1666666667 Combine like terms: 0.485912658 + -0.1666666667 = 0.3192459913 y = 0.3192459913 Simplifying y = 0.3192459913

Subproblem 2

y + 0.1666666667 = -0.485912658 Simplifying y + 0.1666666667 = -0.485912658 Reorder the terms: 0.1666666667 + y = -0.485912658 Solving 0.1666666667 + y = -0.485912658 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.1666666667' to each side of the equation. 0.1666666667 + -0.1666666667 + y = -0.485912658 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + y = -0.485912658 + -0.1666666667 y = -0.485912658 + -0.1666666667 Combine like terms: -0.485912658 + -0.1666666667 = -0.6525793247 y = -0.6525793247 Simplifying y = -0.6525793247

Solution

The solution to the problem is based on the solutions from the subproblems. y = {0.3192459913, -0.6525793247}

Solution

y = {0.3192459913, -0.6525793247}

See similar equations:

| 9x^2-19x=0 | | 35x^2+69x+28=0 | | -7x+3(3x+5)=-9 | | 2(8p-1)-7=119 | | 30-x=43-x | | -6[4x+1]+7x+9[x-3]=4 | | 8b^2-41b+5=0 | | 28=-4(n+5) | | 10+5d=25 | | 37+6x=7(x+6) | | (4-2)2/(7-5)2= | | 48x-30=60 | | -2(-5)(-4)= | | -ax+p=r | | -2-(-3)+(-4)= | | -72.6=108.4 | | 3(2*2-4)=9-3(2+1) | | -11+(-5)-14= | | -fx-8=h | | 33-77= | | 168+32-(-26)-17+(-320)= | | 2-16= | | 6x-12=4x+12 | | -29+71= | | 32+(-15)+21+16+(-42)+(-12)= | | -9+1= | | 6x+18=5x-15 | | 46-(-12)= | | 5(t-6)+7t=7(3t+3)-12 | | 161/2= | | 2/161= | | -6p=32 |

Equations solver categories