4(2c+1)=6(c+3)c

Simple and best practice solution for 4(2c+1)=6(c+3)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2c+1)=6(c+3)c equation:



4(2c+1)=6(c+3)c
We move all terms to the left:
4(2c+1)-(6(c+3)c)=0
We multiply parentheses
8c-(6(c+3)c)+4=0
We calculate terms in parentheses: -(6(c+3)c), so:
6(c+3)c
We multiply parentheses
6c^2+18c
Back to the equation:
-(6c^2+18c)
We get rid of parentheses
-6c^2+8c-18c+4=0
We add all the numbers together, and all the variables
-6c^2-10c+4=0
a = -6; b = -10; c = +4;
Δ = b2-4ac
Δ = -102-4·(-6)·4
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-14}{2*-6}=\frac{-4}{-12} =1/3 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+14}{2*-6}=\frac{24}{-12} =-2 $

See similar equations:

| (y-38)+(y-67)+y+51=360 | | 3(a+3)=21,a | | 1/3x-2=1/4x+5 | | (2y-105)+y=309 | | -3g/4=9 | | 9a+3=4a+8,a | | 11/3a+3=1/6(a-3) | | 20=d/10 | | (2÷3)x-1=11 | | 4p²+p-45,p=-5 | | X=10+20t-5t2 | | 8x-12=5x-3,x= | | x=4,5 | | X=10-20t-5t | | |4x-5|=|3x-2| | | 3y÷2=9 | | 6x+5=3(2x=1) | | 16=4(3x+10) | | 4x5+x=32 | | -40=2(5x-5) | | (x2-9)(2x+1)=0 | | -2x+5=-7×-5 | | 18x×(136+18x)100​ =21 | | 72+56+x+x=360 | | d2=2d | | 59=2x+9 | | 64+56+5(a+2)+2(2a+7)=360 | | 10x-1=4x+27 | | 10a-1=4a+27 | | 4x-8=5x+98 | | 4x-3-6x+1=12x+18 | | 5x+3x+4x+6x=360 |

Equations solver categories