4(2x)+22x=(x+2)(x+3)

Simple and best practice solution for 4(2x)+22x=(x+2)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2x)+22x=(x+2)(x+3) equation:



4(2x)+22x=(x+2)(x+3)
We move all terms to the left:
4(2x)+22x-((x+2)(x+3))=0
We add all the numbers together, and all the variables
64x-((x+2)(x+3))=0
We multiply parentheses ..
-((+x^2+3x+2x+6))+64x=0
We calculate terms in parentheses: -((+x^2+3x+2x+6)), so:
(+x^2+3x+2x+6)
We get rid of parentheses
x^2+3x+2x+6
We add all the numbers together, and all the variables
x^2+5x+6
Back to the equation:
-(x^2+5x+6)
We add all the numbers together, and all the variables
64x-(x^2+5x+6)=0
We get rid of parentheses
-x^2+64x-5x-6=0
We add all the numbers together, and all the variables
-1x^2+59x-6=0
a = -1; b = 59; c = -6;
Δ = b2-4ac
Δ = 592-4·(-1)·(-6)
Δ = 3457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-\sqrt{3457}}{2*-1}=\frac{-59-\sqrt{3457}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+\sqrt{3457}}{2*-1}=\frac{-59+\sqrt{3457}}{-2} $

See similar equations:

| 4-x/4=10 | | 4x^2+22x=(x+2)(x+3) | | 5(x+2)^2-10=47 | | 2.9x-13.75=5.1 | | (20y-11)=(4y+6) | | (20y-11)=(4y+6)=(7y-7) | | 8^2=7^2+2*a*3 | | 9m^2+18m+17=0 | | 5(u-5)=7 | | 3.6x-11.22=2.1 | | 6w(2-w)=7 | | 2.9x-15.77=5.4 | | T2-6t-16=0 | | 9x+9x2-4=0 | | x+9x2-4=0 | | 8p-2p=16 | | 8y+6=3y-9= | | x/5-x+1/5=4 | | 4(w+4)=9w-14 | | x/5+x/5=10 | | 3(4x+5)=14 | | (8x)+4(1.5x)=154 | | r^2=7r+8 | | 7x-56=14 | | 8x+4(1.5x)=154 | | 7x-56=13 | | 2x+4x=10x-28 | | 2x+3x=180° | | 2y+5(y+4)=4y | | 8x+1.5x=154 | | Y=12x+5/3 | | 0.33=x+0.33x |

Equations solver categories