4(2x-5)+15=3x(x+10)

Simple and best practice solution for 4(2x-5)+15=3x(x+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2x-5)+15=3x(x+10) equation:


Simplifying
4(2x + -5) + 15 = 3x(x + 10)

Reorder the terms:
4(-5 + 2x) + 15 = 3x(x + 10)
(-5 * 4 + 2x * 4) + 15 = 3x(x + 10)
(-20 + 8x) + 15 = 3x(x + 10)

Reorder the terms:
-20 + 15 + 8x = 3x(x + 10)

Combine like terms: -20 + 15 = -5
-5 + 8x = 3x(x + 10)

Reorder the terms:
-5 + 8x = 3x(10 + x)
-5 + 8x = (10 * 3x + x * 3x)
-5 + 8x = (30x + 3x2)

Solving
-5 + 8x = 30x + 3x2

Solving for variable 'x'.

Combine like terms: 8x + -30x = -22x
-5 + -22x + -3x2 = 30x + 3x2 + -30x + -3x2

Reorder the terms:
-5 + -22x + -3x2 = 30x + -30x + 3x2 + -3x2

Combine like terms: 30x + -30x = 0
-5 + -22x + -3x2 = 0 + 3x2 + -3x2
-5 + -22x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
-5 + -22x + -3x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(5 + 22x + 3x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(5 + 22x + 3x2)' equal to zero and attempt to solve: Simplifying 5 + 22x + 3x2 = 0 Solving 5 + 22x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1.666666667 + 7.333333333x + x2 = 0 Move the constant term to the right: Add '-1.666666667' to each side of the equation. 1.666666667 + 7.333333333x + -1.666666667 + x2 = 0 + -1.666666667 Reorder the terms: 1.666666667 + -1.666666667 + 7.333333333x + x2 = 0 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + 7.333333333x + x2 = 0 + -1.666666667 7.333333333x + x2 = 0 + -1.666666667 Combine like terms: 0 + -1.666666667 = -1.666666667 7.333333333x + x2 = -1.666666667 The x term is 7.333333333x. Take half its coefficient (3.666666667). Square it (13.44444445) and add it to both sides. Add '13.44444445' to each side of the equation. 7.333333333x + 13.44444445 + x2 = -1.666666667 + 13.44444445 Reorder the terms: 13.44444445 + 7.333333333x + x2 = -1.666666667 + 13.44444445 Combine like terms: -1.666666667 + 13.44444445 = 11.777777783 13.44444445 + 7.333333333x + x2 = 11.777777783 Factor a perfect square on the left side: (x + 3.666666667)(x + 3.666666667) = 11.777777783 Calculate the square root of the right side: 3.431876714 Break this problem into two subproblems by setting (x + 3.666666667) equal to 3.431876714 and -3.431876714.

Subproblem 1

x + 3.666666667 = 3.431876714 Simplifying x + 3.666666667 = 3.431876714 Reorder the terms: 3.666666667 + x = 3.431876714 Solving 3.666666667 + x = 3.431876714 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.666666667' to each side of the equation. 3.666666667 + -3.666666667 + x = 3.431876714 + -3.666666667 Combine like terms: 3.666666667 + -3.666666667 = 0.000000000 0.000000000 + x = 3.431876714 + -3.666666667 x = 3.431876714 + -3.666666667 Combine like terms: 3.431876714 + -3.666666667 = -0.234789953 x = -0.234789953 Simplifying x = -0.234789953

Subproblem 2

x + 3.666666667 = -3.431876714 Simplifying x + 3.666666667 = -3.431876714 Reorder the terms: 3.666666667 + x = -3.431876714 Solving 3.666666667 + x = -3.431876714 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.666666667' to each side of the equation. 3.666666667 + -3.666666667 + x = -3.431876714 + -3.666666667 Combine like terms: 3.666666667 + -3.666666667 = 0.000000000 0.000000000 + x = -3.431876714 + -3.666666667 x = -3.431876714 + -3.666666667 Combine like terms: -3.431876714 + -3.666666667 = -7.098543381 x = -7.098543381 Simplifying x = -7.098543381

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.234789953, -7.098543381}

Solution

x = {-0.234789953, -7.098543381}

See similar equations:

| 5(-4)+8(x+6)=12(x+4) | | 6x^2+27x+21=0 | | 6(5b-1)=174 | | 3(cos(x))=cos(x)+1 | | p+9(-2)=21 | | 25x^2-35x+5=0 | | x^2+6x+96=0 | | abs(2x-6)+3=10 | | -235=-5(-6n+5) | | -26+2=-39+9x | | 3x^3-9=3 | | -6v^2+30v-36=0 | | s+-10=14 | | x(3-x)=0 | | 5+7x=-23 | | y-3z=10 | | t^5=9t^3 | | 7x-(2x+7)=9x-15 | | 3(x+5)=x+2x | | x^4+5x^3-9x^2-45x=0 | | 7(10r+-7)= | | -5*(-4)= | | 200-15x=50 | | 24x^2+42x=0 | | 8x+11=77 | | log(27)=3 | | (x+7)(3x-2)= | | 4x-15=13x+30 | | 8x^2+88=20x-2+3x^2 | | 3u-3=-21 | | 6t+9=4t#8722;5 | | x^3+10*x+3=sqr(14) |

Equations solver categories