4(2y+1)=2(12-y)y=

Simple and best practice solution for 4(2y+1)=2(12-y)y= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2y+1)=2(12-y)y= equation:



4(2y+1)=2(12-y)y=
We move all terms to the left:
4(2y+1)-(2(12-y)y)=0
We add all the numbers together, and all the variables
4(2y+1)-(2(-1y+12)y)=0
We multiply parentheses
8y-(2(-1y+12)y)+4=0
We calculate terms in parentheses: -(2(-1y+12)y), so:
2(-1y+12)y
We multiply parentheses
-2y^2+24y
Back to the equation:
-(-2y^2+24y)
We get rid of parentheses
2y^2-24y+8y+4=0
We add all the numbers together, and all the variables
2y^2-16y+4=0
a = 2; b = -16; c = +4;
Δ = b2-4ac
Δ = -162-4·2·4
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{14}}{2*2}=\frac{16-4\sqrt{14}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{14}}{2*2}=\frac{16+4\sqrt{14}}{4} $

See similar equations:

| -3-3=-8x+-28 | | -3-3x=+4(2x+7) | | -27=w+-16 | | 14=y/2-16 | | -1=p+-9 | | a+5.92=$12.29 | | 3y-10=74 | | 3+4/7=1/2x+2 | | -10x+2x=-40 | | (w-22)=34 | | -3/24(2x+1)=-9/8 | | 5d–3=8.5 | | 51+(2x+3)=(4x+8) | | 53=8^x | | 6x+52x=-19 | | −11=-47-12b | | 252=2x^-x-1 | | 7y-37= | | 7m-14m-10= | | –6(–3y+2)=18y−12 | | 3x+62x+4= | | -43x+5=11 | | 6-7x+5-3x+5-4x=180 | | 90+X+2x=18” | | 3×n+7=n+23 | | -16x+48x=0 | | 40x^2-5x=0 | | 42x^2+264x-72=0 | | 9j=954 | | (7x)x9=81 | | (x⁴)³=x | | x+3=x-16 |

Equations solver categories