4(2z-1)-3(z+6)=3(z+1)

Simple and best practice solution for 4(2z-1)-3(z+6)=3(z+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(2z-1)-3(z+6)=3(z+1) equation:


Simplifying
4(2z + -1) + -3(z + 6) = 3(z + 1)

Reorder the terms:
4(-1 + 2z) + -3(z + 6) = 3(z + 1)
(-1 * 4 + 2z * 4) + -3(z + 6) = 3(z + 1)
(-4 + 8z) + -3(z + 6) = 3(z + 1)

Reorder the terms:
-4 + 8z + -3(6 + z) = 3(z + 1)
-4 + 8z + (6 * -3 + z * -3) = 3(z + 1)
-4 + 8z + (-18 + -3z) = 3(z + 1)

Reorder the terms:
-4 + -18 + 8z + -3z = 3(z + 1)

Combine like terms: -4 + -18 = -22
-22 + 8z + -3z = 3(z + 1)

Combine like terms: 8z + -3z = 5z
-22 + 5z = 3(z + 1)

Reorder the terms:
-22 + 5z = 3(1 + z)
-22 + 5z = (1 * 3 + z * 3)
-22 + 5z = (3 + 3z)

Solving
-22 + 5z = 3 + 3z

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '-3z' to each side of the equation.
-22 + 5z + -3z = 3 + 3z + -3z

Combine like terms: 5z + -3z = 2z
-22 + 2z = 3 + 3z + -3z

Combine like terms: 3z + -3z = 0
-22 + 2z = 3 + 0
-22 + 2z = 3

Add '22' to each side of the equation.
-22 + 22 + 2z = 3 + 22

Combine like terms: -22 + 22 = 0
0 + 2z = 3 + 22
2z = 3 + 22

Combine like terms: 3 + 22 = 25
2z = 25

Divide each side by '2'.
z = 12.5

Simplifying
z = 12.5

See similar equations:

| x/3=30 | | 7[8-3h]=21h-49 | | 2x-21=9x | | 0.80x+.05(4-x)=.10(77) | | 2(2x+1)=4(x-2) | | x=18-2x | | -3x+7=8-2x+4 | | 3(4+2x)=36 | | 4s+5=54 | | v^5=7 | | 3=-5x-7 | | 105=22t-t^2 | | -5(-4v+4)-6v=6(v-5)-2 | | -7x=40+x | | x^4+4x^2+4+36x=0 | | 3c-6=21 | | 13n-3-12n-9=5 | | 24-8x=4x | | 3-4q=27 | | -3+7x=-59 | | 3v-4=5 | | 6-3a=a-s(2a+5) | | -5k+7=-23 | | 3(6x-7)=9(2x+7) | | .66x-1.5+.25x=.625 | | 10x-15x= | | 60=y-15 | | 4m+18=5m+13 | | -5+2q=-11 | | 60-y=15 | | -15=a-7 | | 8(3r+1)=21+(8r-5) |

Equations solver categories