If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(3-x)+8=-2(2-x)x
We move all terms to the left:
4(3-x)+8-(-2(2-x)x)=0
We add all the numbers together, and all the variables
4(-1x+3)-(-2(-1x+2)x)+8=0
We multiply parentheses
-4x-(-2(-1x+2)x)+12+8=0
We calculate terms in parentheses: -(-2(-1x+2)x), so:We add all the numbers together, and all the variables
-2(-1x+2)x
We multiply parentheses
2x^2-4x
Back to the equation:
-(2x^2-4x)
-4x-(2x^2-4x)+20=0
We get rid of parentheses
-2x^2-4x+4x+20=0
We add all the numbers together, and all the variables
-2x^2+20=0
a = -2; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-2)·20
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-2}=\frac{0-4\sqrt{10}}{-4} =-\frac{4\sqrt{10}}{-4} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-2}=\frac{0+4\sqrt{10}}{-4} =\frac{4\sqrt{10}}{-4} =\frac{\sqrt{10}}{-1} $
| x^2+120x-2700=0 | | 7+(4+x)=3-(2x-14)x | | 7x-4+3x+6=9-2x+7+5x= | | 4x=1/2x*5 | | 8-2x-5+5x=8+4x-3= | | (4x+4)-(3x-1)=4x+(5x-3)x | | 2(x+5)-x=2(x-6) | | (4x+6)-(2x+6)=6x-8x | | 3^2x+8*3^x-3=0 | | 54+162+x=180 | | -3x+8=-x+8+2x | | 7-3x=-8-8x= | | 8-2x=4x-4= | | 8x+14+69+49=180 | | 6x=24-2x= | | 8x=14+x= | | -36h=-72 | | 5x=3x-6= | | x-9+7x=55= | | 8x-5-4x=15= | | p/8=+7 | | C=4(3h+5 | | 3x+7+2x=22= | | 34=q+16 | | 6(r+8)=24 | | 3g^2-20+12=0 | | -3q=-21 | | (3x^2-4)(2x^2-x)=0 | | 8=1/10s | | 1/7t=+8 | | F⋅x=3⋅x2+-(12⋅x)+9 | | 7t=+28 |