If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(3x+6)/5=2(2x+5)/3-3x-3
We move all terms to the left:
4(3x+6)/5-(2(2x+5)/3-3x-3)=0
Domain of the equation: 3-3x-3)!=0We calculate fractions
We move all terms containing x to the left, all other terms to the right
-3x-3)!=-3
x∈R
(33x+72)/(-3x)+(-(2(2x+5)*5)/(-3x)=0
We calculate terms in parentheses: +(-(2(2x+5)*5)/(-3x), so:We get rid of parentheses
-(2(2x+5)*5)/(-3x
We multiply all the terms by the denominator
-(2(2x+5)*5)
We calculate terms in parentheses: -(2(2x+5)*5), so:We get rid of parentheses
2(2x+5)*5
We multiply parentheses
20x+50
Back to the equation:
-(20x+50)
-20x-50
Back to the equation:
+(-20x-50)
(33x+72)/(-3x)-20x-50=0
We multiply all the terms by the denominator
(33x+72)-20x*(-3x)-50*(-3x)=0
We multiply parentheses
60x^2+(33x+72)+150x=0
We get rid of parentheses
60x^2+33x+150x+72=0
We add all the numbers together, and all the variables
60x^2+183x+72=0
a = 60; b = 183; c = +72;
Δ = b2-4ac
Δ = 1832-4·60·72
Δ = 16209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16209}=\sqrt{9*1801}=\sqrt{9}*\sqrt{1801}=3\sqrt{1801}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(183)-3\sqrt{1801}}{2*60}=\frac{-183-3\sqrt{1801}}{120} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(183)+3\sqrt{1801}}{2*60}=\frac{-183+3\sqrt{1801}}{120} $
| 9-6x+5x=19 | | 5x-8=29 | | 3-(x+6)=2 | | 2x+x=67 | | -10-p=-8 | | 3(5j+20=2(3j-6) | | -7+i=-4 | | 28=4(3d+3)−4d | | 2x+9=3x−10 | | 2i-3=-3 | | 4x-10+3x+30=180 | | 7x+3=-4x^2=0 | | 46=3(r+6)+5(r+4 | | 5m–(4m–1)=-12 | | 5x-1+5x=79 | | 7x+3=-4x^2 | | 3y+y-12=56 | | -1+j/2=2 | | -10+c/2=-5 | | -s/4-3=-8 | | 3x-15+9=2x | | 4(x+1)+x=24 | | 2x/5=2/6+3x+1/4 | | 3(20-x)=15 | | 3x7=5x+2(3-x)+1 | | y-2.13=-9.74 | | 20+3(x-13)=-5(1-x)+14 | | 11(x−5)=10(x+5) | | -4m-9=-13 | | 3w²=-8w-5 | | -2g+3=9 | | 4/k+3=14 |