4(3x-6)=2x(5x-15)

Simple and best practice solution for 4(3x-6)=2x(5x-15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(3x-6)=2x(5x-15) equation:



4(3x-6)=2x(5x-15)
We move all terms to the left:
4(3x-6)-(2x(5x-15))=0
We multiply parentheses
12x-(2x(5x-15))-24=0
We calculate terms in parentheses: -(2x(5x-15)), so:
2x(5x-15)
We multiply parentheses
10x^2-30x
Back to the equation:
-(10x^2-30x)
We get rid of parentheses
-10x^2+12x+30x-24=0
We add all the numbers together, and all the variables
-10x^2+42x-24=0
a = -10; b = 42; c = -24;
Δ = b2-4ac
Δ = 422-4·(-10)·(-24)
Δ = 804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{804}=\sqrt{4*201}=\sqrt{4}*\sqrt{201}=2\sqrt{201}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{201}}{2*-10}=\frac{-42-2\sqrt{201}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{201}}{2*-10}=\frac{-42+2\sqrt{201}}{-20} $

See similar equations:

| 15=13-4s | | 12×-3+7x+12=180 | | 3x+(1/4)=3/8 | | 3n2+4n−15=0 | | m/2-7.8=-6.6 | | 7(n+11)=182 | | 2.3x+.7x-2=3(x-4) | | -3n+10=5 | | 5+10x=6+48x | | 5x+25+2x+43=180 | | 2y-5=-1.64 | | 34x–17=-5 | | X+17x+40=180 | | -7.26=-3m+-3.36 | | 3(a+4)+2a-5=12 | | 5x10=6x48 | | 12.8x+10.5=14.5x+15 | | 5x+10=6x+48 | | -1/4a=4=7/4a-3 | | 2(x=5)=15 | | |6x+5|−18=7 | | |6x+5|−18|=7 | | -3+4y=5 | | 100x=360+8x | | -2f+3=7 | | 3•-1+4y=5 | | -2x+5.9=8.4 | | 12x+12=2x+54 | | 7(9x-2)+3=-3(4x+1)=6 | | -4(-5-5)-2x=-88 | | 340=2x+100 | | 4v=8.06=2.98 |

Equations solver categories