4(3x-7)-7=1/5x-3

Simple and best practice solution for 4(3x-7)-7=1/5x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(3x-7)-7=1/5x-3 equation:



4(3x-7)-7=1/5x-3
We move all terms to the left:
4(3x-7)-7-(1/5x-3)=0
Domain of the equation: 5x-3)!=0
x∈R
We multiply parentheses
12x-(1/5x-3)-28-7=0
We get rid of parentheses
12x-1/5x+3-28-7=0
We multiply all the terms by the denominator
12x*5x+3*5x-28*5x-7*5x-1=0
Wy multiply elements
60x^2+15x-140x-35x-1=0
We add all the numbers together, and all the variables
60x^2-160x-1=0
a = 60; b = -160; c = -1;
Δ = b2-4ac
Δ = -1602-4·60·(-1)
Δ = 25840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25840}=\sqrt{16*1615}=\sqrt{16}*\sqrt{1615}=4\sqrt{1615}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-4\sqrt{1615}}{2*60}=\frac{160-4\sqrt{1615}}{120} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+4\sqrt{1615}}{2*60}=\frac{160+4\sqrt{1615}}{120} $

See similar equations:

| 180=112x+4 | | 10−3p=19 | | 2/7+m=4 | | 3(3u+10)=120 | | 6x-6=9x-15 | | 133=x+145 | | 80=105+x | | 42+2x+19+x=180 | | 75=x+116 | | 5^2x=56 | | 65=14x-5 | | 4x^2+24x=-43 | | 3+12y=11 | | 3x^2+4x+50=0 | | 3(m-5=m-7 | | 11/15=w−15/8​ | | 7a-4(a-5)=29 | | 9x^2-30x+36=72 | | 35+1.5x=20+x | | 35+1.5x=2-+x | | 5400+750x=900x | | 30+5x-100=180 | | 16.25+3x=4.25x | | 16.25+3x=425x | | 45x^2-23x=0 | | 41x^2-32x=0 | | f(X)=22+X-1/3 | | 8+5y=7-2y | | 22=13+y/5 | | 2(x+1)-3(x-2)=x*6 | | -2x+42=-3/5x+126/5 | | 8x-32=5x-5 |

Equations solver categories