4(4x-1)=2x(2x+2)

Simple and best practice solution for 4(4x-1)=2x(2x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(4x-1)=2x(2x+2) equation:



4(4x-1)=2x(2x+2)
We move all terms to the left:
4(4x-1)-(2x(2x+2))=0
We multiply parentheses
16x-(2x(2x+2))-4=0
We calculate terms in parentheses: -(2x(2x+2)), so:
2x(2x+2)
We multiply parentheses
4x^2+4x
Back to the equation:
-(4x^2+4x)
We get rid of parentheses
-4x^2+16x-4x-4=0
We add all the numbers together, and all the variables
-4x^2+12x-4=0
a = -4; b = 12; c = -4;
Δ = b2-4ac
Δ = 122-4·(-4)·(-4)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{5}}{2*-4}=\frac{-12-4\sqrt{5}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{5}}{2*-4}=\frac{-12+4\sqrt{5}}{-8} $

See similar equations:

| -20=2(y-4)-8y | | 2*16=3x-9-(x+5) | | -t=6+5t | | 20+4x=-4-2x | | a/20=3 | | 2a+4=3 | | 14.3h-6.5h=10.3h+9 | | -0.5(x+2.4)=6 | | x+9+4x-1=152 | | 48+66+2n=180 | | 180=-4(8a-5) | | 8=m6 | | 3.4+-5.16=x | | 2b-4=7 | | 16=5(u+6)-7u | | 6(d+2)+24=3d | | 5(3m+80=100 | | -5w-10=8w-42 | | 3/8=15/d | | −3x+33=−12 | | x+15-4x=50=180 | | 12+3x=1-8x | | t/7=13 | | x−4=3 | | x+15-4x+50=180 | | 9x−6=5x+18 | | -6+m=-20 | | t7=13 | | 12+3x=1-8x= | | 32d=(248.00)(40) | | x+15=4x+50=180 | | 2(v-8)-7v=4 |

Equations solver categories