If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(5x^2)=48
We move all terms to the left:
4(5x^2)-(48)=0
a = 45; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·45·(-48)
Δ = 8640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8640}=\sqrt{576*15}=\sqrt{576}*\sqrt{15}=24\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{15}}{2*45}=\frac{0-24\sqrt{15}}{90} =-\frac{24\sqrt{15}}{90} =-\frac{4\sqrt{15}}{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{15}}{2*45}=\frac{0+24\sqrt{15}}{90} =\frac{24\sqrt{15}}{90} =\frac{4\sqrt{15}}{15} $
| -18=-2/y | | 1234124214214124123412412412412c=-13-c | | 64x^2+64x+14=0 | | 12+5(4c-2)= | | 5/11x+2/3x-1/6x=-189 | | 9x^2+18x=40 | | 1/(4+x^2)=-1-|x2-4x+3| | | -((44)(36))/(25^2)+6+6=x | | 72a-40+40=72a | | X^2-6x-20=20 | | 2x2-9=-137 | | -(44x36)/(25^2)+6+6=x | | 20+5(2c-3)= | | 2z×z+2z+5=0 | | 8+8x=11x | | |y|=-18 | | 27x-265=5 | | n+6÷5=2 | | 3y^2-3y-429/4=0 | | 6(x+5)=41 | | 4x2+1=25 | | 3x+2x-45=15-10x+35 | | -(44(6)^2)/(25^2)+(6)+6=x | | (3x+5)(4x-1)=(6x-3)(2x+7) | | -(44(6)^2)/(25^2)+(6)+6=y | | x−0−=−4 | | 0.5x-2.5-x=1.5 | | 3x/4=7/8 | | 8=2h-2 | | 2/7c-1/14c=-3 | | -3k-8=5k | | (15x-13)+(8x+18)=90 |