If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(8z+4)(5z+10)=0
We multiply parentheses ..
4(+40z^2+80z+20z+40)=0
We multiply parentheses
160z^2+320z+80z+160=0
We add all the numbers together, and all the variables
160z^2+400z+160=0
a = 160; b = 400; c = +160;
Δ = b2-4ac
Δ = 4002-4·160·160
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(400)-240}{2*160}=\frac{-640}{320} =-2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(400)+240}{2*160}=\frac{-160}{320} =-1/2 $
| 3(b+7)+2(b+4)+5b=0 | | x+0.25x=83333 | | −d^2−12d+4=−6d^2 | | x=0.25x=83333 | | g÷8/5=1/ | | (3m-1)^2-12=0 | | −d^2−12d+4=−6d2 | | -27=3(2w+4)+9 | | −d2−12d+4=-6d^2 | | 12/3x-3/4=3/4 | | 12/3x-3/4=3$ | | 11y^2-19y-10=-4y^2 | | -2a+5+10a-9=0 | | 3(k−47)=72 | | 18+5x+7x=180 | | (2z+9)=(4z-3) | | 40n^2=230^3 | | 7(g-82)=98 | | u/2+7=10 | | 17=3(g+3)+g | | -72+10y=8 | | k/4+9=11 | | (2z+09)=(4z-3) | | 4(n+5)(n+2)=280^3 | | 5x+24=-1 | | 5(x+8)-3=12 | | 19=6x+31 | | 8(2x7)=3 | | 9x+2=641 | | 42=9z | | 4x-4.6=2x+3.2 | | 32x=-340 |