If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(9x^2)=152
We move all terms to the left:
4(9x^2)-(152)=0
a = 49; b = 0; c = -152;
Δ = b2-4ac
Δ = 02-4·49·(-152)
Δ = 29792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29792}=\sqrt{784*38}=\sqrt{784}*\sqrt{38}=28\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{38}}{2*49}=\frac{0-28\sqrt{38}}{98} =-\frac{28\sqrt{38}}{98} =-\frac{2\sqrt{38}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{38}}{2*49}=\frac{0+28\sqrt{38}}{98} =\frac{28\sqrt{38}}{98} =\frac{2\sqrt{38}}{7} $
| 2/3(5/8+8t)-1/8=7/8 | | 5(x)-1=3(x)=115 | | 3y+2(y+2)=-7 | | 4x-22=74 | | -3y+10y=-21 | | 8x+27+x=90 | | 12t−11t=5 | | 8x-14=170 | | 8(x-2)+5x=10 | | j2−2j−3=0 | | 20x+16.4=-69 | | 3.2y=4 | | 25y+5=25y= | | 3x=8=4x+1 | | 6(x)+3=8(x)-7 | | 1/3x–12=3 | | y=23,000(1.05^30}) | | 7r^2-21r-70=0 | | 50x+20(x*2)=600 | | (8x+5)(x-6)=0 | | 20w-15w=20 | | a-5=20-a | | 4z/−12=-4 | | (N-7)(n+5)=0 | | (0.25)^x=256 | | 6x+4=-50x= | | 6x-6-4x+11=x-1+x | | 6x/5=6 | | 27(y−8)=7y+42 | | 8p−7p=8 | | 6j-4j=12 | | 3x+237=13x-13 |