If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(d+7)d=3
We move all terms to the left:
4(d+7)d-(3)=0
We multiply parentheses
4d^2+28d-3=0
a = 4; b = 28; c = -3;
Δ = b2-4ac
Δ = 282-4·4·(-3)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-8\sqrt{13}}{2*4}=\frac{-28-8\sqrt{13}}{8} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+8\sqrt{13}}{2*4}=\frac{-28+8\sqrt{13}}{8} $
| 5x-(x^2/100)-(x/5)+500=0 | | 5=2x+21÷3 | | 5(n-8)=-12+n | | 9=-+k/5 | | 5x2−6x=8 | | 31-5x=32 | | 7b-2=-2(1+8b) | | 36-2v=-8(v-3) | | 3x=5=7x | | |31-5x|=32 | | 5-6(1+x)=9-x | | 8(x-1)=3x+32 | | -28-7a=2(a+3)+8a | | 2y=+1=7 | | (x+54)+5x+90=180 | | 4x/1.50=38.00 | | X/3=3t | | 5(2y-7)+8(y+6)=30 | | 5x2-3x=2 | | 7x-9+112=180 | | -88=-8(b+3) | | (2x+6)+4x)=90 | | 7x-9=112 | | -97=8x+3(x-3) | | –8c+1=–3 | | -4(5+3x)=-30 | | 4w=110 | | -8(2x-6)+4=-60 | | 5m-(6m=9)=11 | | -2x+1,8=3.2 | | -8I2x-6I+4=-60 | | n/12=11/12 |