If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(r+80)=(1/5)(20r+400)
We move all terms to the left:
4(r+80)-((1/5)(20r+400))=0
Domain of the equation: 5)(20r+400))!=0We add all the numbers together, and all the variables
r∈R
4(r+80)-((+1/5)(20r+400))=0
We multiply parentheses
4r-((+1/5)(20r+400))+320=0
We multiply parentheses ..
-((+20r^2+1/5*400))+4r+320=0
We multiply all the terms by the denominator
-((+20r^2+1+4r*5*400))+320*5*400))=0
We calculate terms in parentheses: -((+20r^2+1+4r*5*400)), so:We add all the numbers together, and all the variables
(+20r^2+1+4r*5*400)
We get rid of parentheses
20r^2+4r*5*400+1
Wy multiply elements
20r^2+8000r*4+1
Wy multiply elements
20r^2+32000r+1
Back to the equation:
-(20r^2+32000r+1)
-(20r^2+32000r+1)=0
We get rid of parentheses
-20r^2-32000r-1=0
a = -20; b = -32000; c = -1;
Δ = b2-4ac
Δ = -320002-4·(-20)·(-1)
Δ = 1023999920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1023999920}=\sqrt{16*63999995}=\sqrt{16}*\sqrt{63999995}=4\sqrt{63999995}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32000)-4\sqrt{63999995}}{2*-20}=\frac{32000-4\sqrt{63999995}}{-40} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32000)+4\sqrt{63999995}}{2*-20}=\frac{32000+4\sqrt{63999995}}{-40} $
| U^2-4u+4U=0 | | 3x+41=9x+5 | | 4a-2=3a=7 | | 6x-5(6x+39=-75 | | 11.4=4x | | 5n-6=3n | | Y=39-4c | | 2.6x+7.2-1.4x=14.4 | | 6x-3+5x+18=125 | | -15=k+6 | | -1/3-x=x-9 | | 90+8x-4+4x+22=180 | | u^2+2u-120=0 | | 10x+2=-48 | | 18+.8x=9+.12x | | 3.508=9.7−z·2.4 | | -3(x-4)=4x-2 | | 3f=4 | | 5x=(x+1)=5-2x | | u^2-21u+90=0 | | 10x-9=-129 | | ‒1.5|x+3|=‒7.5 | | 130-y=180 | | x+5+3x=-43 | | -38-(-2)=x/6 | | -2(8y-1)+2y=2(y+3) | | 2x=60+70=180 | | 18x−6+60=180 | | y=9−2y | | 3=11t9+t | | 3=11t | | 4x+4=-7+2x+15 |