4(t-3)+8=4(2t-4)t=

Simple and best practice solution for 4(t-3)+8=4(2t-4)t= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(t-3)+8=4(2t-4)t= equation:



4(t-3)+8=4(2t-4)t=
We move all terms to the left:
4(t-3)+8-(4(2t-4)t)=0
We multiply parentheses
4t-(4(2t-4)t)-12+8=0
We calculate terms in parentheses: -(4(2t-4)t), so:
4(2t-4)t
We multiply parentheses
8t^2-16t
Back to the equation:
-(8t^2-16t)
We add all the numbers together, and all the variables
4t-(8t^2-16t)-4=0
We get rid of parentheses
-8t^2+4t+16t-4=0
We add all the numbers together, and all the variables
-8t^2+20t-4=0
a = -8; b = 20; c = -4;
Δ = b2-4ac
Δ = 202-4·(-8)·(-4)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{17}}{2*-8}=\frac{-20-4\sqrt{17}}{-16} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{17}}{2*-8}=\frac{-20+4\sqrt{17}}{-16} $

See similar equations:

| 5-3x=-5x | | 8w+5=-59 | | 8x-4=7x+13 | | 132=17x | | 2x-63=637 | | 5x-5/6+ 2x = 106 | | 7q-46+3q+6=q | | 25=5+37t+-16t2 | | 7m/1=9 | | 5x-5 + 2x = 106 | | 6(x+8)=2(x+7)+62 | | 2x-39=789 | | 39-x=789 | | -6.1=y/7+5.1 | | -20m+40=-21m+39 | | 3x+9=-5x+17 | | 7x-(4x-4)=28 | | 3x=3(1/3x)+2x=54 | | -3(u+6)=6u-12 | | 18x^2=-3x+6 | | 2x-59=591 | | 3x+5=8x-2= | | 367.50=(1500)(r)(2) | | 12x=3×=54 | | 11-2x=8-2x | | 100*x+7*5*5=-6*5 | | -6x+3+4x=7-2x+10 | | 11-4(4x-6)=-5 | | 12x-3+6x=5(6x-2)+3 | | 220-w=108 | | 87-v=205 | | 77=-v+255 |

Equations solver categories