4(x+2)=(2x)2+8x

Simple and best practice solution for 4(x+2)=(2x)2+8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x+2)=(2x)2+8x equation:



4(x+2)=(2x)2+8x
We move all terms to the left:
4(x+2)-((2x)2+8x)=0
We add all the numbers together, and all the variables
-(+2x^2+8x)+4(x+2)=0
We multiply parentheses
-(+2x^2+8x)+4x+8=0
We get rid of parentheses
-2x^2-8x+4x+8=0
We add all the numbers together, and all the variables
-2x^2-4x+8=0
a = -2; b = -4; c = +8;
Δ = b2-4ac
Δ = -42-4·(-2)·8
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{5}}{2*-2}=\frac{4-4\sqrt{5}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{5}}{2*-2}=\frac{4+4\sqrt{5}}{-4} $

See similar equations:

| (8.8÷5.5)+2.1=m | | 3b+4=9b+2 | | 9x=3*(3x-7) | | 6x-2=2- | | -2x2+16x-32=0 | | −100⋅2^(0.5y)=−5 | | y+12.8=61.7 | | 2(x+7)-15=8x | | 3x5=-12 | | (3x-9)(5x+25)=0 | | 3d-4=d+6 | | 4+x×7=95 | | 4+x×7=55 | | 12-4x/5=20 | | 1/2x+5/12x=5∗11 | | x-20=59 | | 40=4d | | −7b=−56 | | (-3,2-x)/3=-2,1 | | (-3,2-x)/3=2,1 | | x/(-3)=-5,1 | | 2.5x=0.5(4x+12) | | m^2-8m-44=0 | | 5(x+3)-3(x+5)=10 | | 13/10s+15/10=6 | | 2a+10/5=22-2a/3 | | -4x=-0.5(10x+18) | | (t+1)²=t²+5 | | 4(3x−5)=22 | | m^2-8m+36=0 | | f=5+1/2 | | 2—3x—12=41 |

Equations solver categories