4(x-1)(x-3)=(x+2)(x+2)

Simple and best practice solution for 4(x-1)(x-3)=(x+2)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x-1)(x-3)=(x+2)(x+2) equation:



4(x-1)(x-3)=(x+2)(x+2)
We move all terms to the left:
4(x-1)(x-3)-((x+2)(x+2))=0
We multiply parentheses ..
4(+x^2-3x-1x+3)-((x+2)(x+2))=0
We calculate terms in parentheses: -((x+2)(x+2)), so:
(x+2)(x+2)
We multiply parentheses ..
(+x^2+2x+2x+4)
We get rid of parentheses
x^2+2x+2x+4
We add all the numbers together, and all the variables
x^2+4x+4
Back to the equation:
-(x^2+4x+4)
We multiply parentheses
4x^2-12x-4x-(x^2+4x+4)+12=0
We get rid of parentheses
4x^2-x^2-12x-4x-4x-4+12=0
We add all the numbers together, and all the variables
3x^2-20x+8=0
a = 3; b = -20; c = +8;
Δ = b2-4ac
Δ = -202-4·3·8
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{19}}{2*3}=\frac{20-4\sqrt{19}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{19}}{2*3}=\frac{20+4\sqrt{19}}{6} $

See similar equations:

| 1.0x+2.0=7.71 | | 15+9s=87 | | 4b+3=-2 | | -9t+6=-8t | | J(x)=-1/3x+5 | | 10(x-5)=9(x+50 | | 2=20-2z | | (4p-7)(2p+3)=0 | | 4x+5=(2-x)(2+x)+3+x^2 | | −3=7(y−7/​9) | | 2(3+3x)-2=40 | | 4x+5=x^2-2+3+x^2 | | 108-(7x+13)=7(x+5)+x | | 6​(3x−​2)=60 | | x2-2,542=0 | | 5x=+3=23 | | 3.84x=65.28 | | 6(-8x+4)=4-3(7x+8) | | 3(2y+5)=5 | | Y-15=y-27 | | 5x^2+3=45 | | 3z+8=3+z | | f(22)=10(22)+2 | | 120000+y=100 | | 2x+x=289 | | -f=f+6 | | ​6(3x−​2)=60 | | 85+y=100 | | 3x=8+3(5+4x) | | -2x+x^2=-1 | | 2d+6=-d | | -a/6-7=9 |

Equations solver categories