4(x-1)=1/2x-4

Simple and best practice solution for 4(x-1)=1/2x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x-1)=1/2x-4 equation:



4(x-1)=1/2x-4
We move all terms to the left:
4(x-1)-(1/2x-4)=0
Domain of the equation: 2x-4)!=0
x∈R
We multiply parentheses
4x-(1/2x-4)-4=0
We get rid of parentheses
4x-1/2x+4-4=0
We multiply all the terms by the denominator
4x*2x+4*2x-4*2x-1=0
Wy multiply elements
8x^2+8x-8x-1=0
We add all the numbers together, and all the variables
8x^2-1=0
a = 8; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·8·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*8}=\frac{0-4\sqrt{2}}{16} =-\frac{4\sqrt{2}}{16} =-\frac{\sqrt{2}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*8}=\frac{0+4\sqrt{2}}{16} =\frac{4\sqrt{2}}{16} =\frac{\sqrt{2}}{4} $

See similar equations:

| -9+2n=-28 | | -6y-2+18y=16+6(2y-3) | | 10/30=5/3(s) | | P=2x^2+22x+318 | | 8x+5=3x-3 | | w-1.2=5.64 | | 10/x=7/x-3 | | x+5.4=9.66 | | 35x+75=50x | | X+1/2=3x3/4 | | x=5.4=9.66 | | u-4.45=6.72 | | 40.25•x=1419.2 | | 4x-8+2x+8=72 | | 40.25(x)=1419.2 | | 13x+12-19x=37 | | 40.25xx=1419.2 | | 2(x-1)=3x+38 | | (x+6)(2x)=80 | | 8=2x+4–3x | | 7.7(x-1)=0.3x+48.3 | | 13x-4=7x+13 | | 7x=11x+24 | | 4x+-15=-3x+96 | | 8/3x-41/15=-4/5x+1 | | 3.99(x+12.25)=77.49 | | (−c+6)=0. | | (−c+6)=0 | | 52+180+x=360 | | 20-16t^2+32t=1 | | 4x2-2×-250=0 | | 5x+80=-3x+36 |

Equations solver categories