If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x-1)x=3(x+5)-114x-4-x=3x+15-113x-4=3x+4
We move all terms to the left:
4(x-1)x-(3(x+5)-114x-4-x)=0
We multiply parentheses
4x^2-4x-(3(x+5)-114x-4-x)=0
We calculate terms in parentheses: -(3(x+5)-114x-4-x), so:We get rid of parentheses
3(x+5)-114x-4-x
determiningTheFunctionDomain 3(x+5)-114x-x-4
We add all the numbers together, and all the variables
-115x+3(x+5)-4
We multiply parentheses
-115x+3x+15-4
We add all the numbers together, and all the variables
-112x+11
Back to the equation:
-(-112x+11)
4x^2-4x+112x-11=0
We add all the numbers together, and all the variables
4x^2+108x-11=0
a = 4; b = 108; c = -11;
Δ = b2-4ac
Δ = 1082-4·4·(-11)
Δ = 11840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11840}=\sqrt{64*185}=\sqrt{64}*\sqrt{185}=8\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(108)-8\sqrt{185}}{2*4}=\frac{-108-8\sqrt{185}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(108)+8\sqrt{185}}{2*4}=\frac{-108+8\sqrt{185}}{8} $
| 2s+1/3-5=4 | | 2x−5=6 | | 4p-3=2p+5-6 | | 6x+7=13+8+ | | 2(x-3)=-x+8 | | -7x+47=4x–8 | | -15=3y+18 | | 6(-5+7p))+6=25-7p | | 2x+6+3x=78 | | 1/2(10x+8)+6=1/4(12x+8)+10 | | x²+70=17x | | (8k-72)= | | (a+5)(a-6)a=0 | | x×-4=-52 | | (2x-5)/4=0 | | X-25+x=2x+5 | | (y-15)= | | 9x+6=5x+4 | | 3x+8=12+2x | | X/6+x/6=x-7 | | -5=-i | | 17/k=51 | | 22=4+3(t+4 | | │6x-3│=15 | | 3x−12−2x+53=−3 | | x/8-1=55 | | 3x+2=3(x=0 | | 34+n=-34(n=0) | | 30x=-45 | | 34+x=-50 | | 5x–9=2x+27 | | l+l+l+2=8 |