4(x-2)-4=2x(-5+x)

Simple and best practice solution for 4(x-2)-4=2x(-5+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x-2)-4=2x(-5+x) equation:



4(x-2)-4=2x(-5+x)
We move all terms to the left:
4(x-2)-4-(2x(-5+x))=0
We add all the numbers together, and all the variables
4(x-2)-(2x(x-5))-4=0
We multiply parentheses
4x-(2x(x-5))-8-4=0
We calculate terms in parentheses: -(2x(x-5)), so:
2x(x-5)
We multiply parentheses
2x^2-10x
Back to the equation:
-(2x^2-10x)
We add all the numbers together, and all the variables
4x-(2x^2-10x)-12=0
We get rid of parentheses
-2x^2+4x+10x-12=0
We add all the numbers together, and all the variables
-2x^2+14x-12=0
a = -2; b = 14; c = -12;
Δ = b2-4ac
Δ = 142-4·(-2)·(-12)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10}{2*-2}=\frac{-24}{-4} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10}{2*-2}=\frac{-4}{-4} =1 $

See similar equations:

| 4x-9/2x-1=6x+5/3x-2 | | ¼(d-1)=16 | | p-0.35p=63.05. | | -6/5u=-42 | | 10=3w-8 | | 29=3x+x+1 | | 7+6x+x=49 | | 5+x+4x=45 | | 9+7x+3x=19 | | v/5-4=-39 | | 1+3x+5x=25 | | x+7+3x=15 | | 15=2x+2x+3 | | 36=x+6x+8 | | v+5/6=42/3 | | 6x+8+2x=72 | | 117=7x+3x+7 | | 12n+60=60 | | 7x+9+7x=23 | | 2+5x+7x=38 | | 5x3=57 | | 142=6x+5x+10 | | 94=4x+4x+6 | | 16y^2+64y=0 | | 77=6x+6x+5 | | 4x+30=6x+`0 | | 1+7x+2x=23 | | k^2/3=4 | | |4x+7|=2x-6 | | 286-y=87 | | 205=154-w | | 295=-x+91 |

Equations solver categories