4(x-3)=8(x-2)4x

Simple and best practice solution for 4(x-3)=8(x-2)4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4(x-3)=8(x-2)4x equation:



4(x-3)=8(x-2)4x
We move all terms to the left:
4(x-3)-(8(x-2)4x)=0
We multiply parentheses
4x-(8(x-2)4x)-12=0
We calculate terms in parentheses: -(8(x-2)4x), so:
8(x-2)4x
We multiply parentheses
32x^2-64x
Back to the equation:
-(32x^2-64x)
We get rid of parentheses
-32x^2+4x+64x-12=0
We add all the numbers together, and all the variables
-32x^2+68x-12=0
a = -32; b = 68; c = -12;
Δ = b2-4ac
Δ = 682-4·(-32)·(-12)
Δ = 3088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3088}=\sqrt{16*193}=\sqrt{16}*\sqrt{193}=4\sqrt{193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-4\sqrt{193}}{2*-32}=\frac{-68-4\sqrt{193}}{-64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+4\sqrt{193}}{2*-32}=\frac{-68+4\sqrt{193}}{-64} $

See similar equations:

| 1.5y-12=-6 | | 14)3(x-7)=48 | | -2(p-4)-9p=-25 | | 60.54=3n+45.87 | | -27=8x+11-7x | | -7(-2+3x)=-28 | | 3x+9=7x+12+2x+15 | | -2p-4-9p+7=-96 | | -6(9-7x)=240 | | 6(p+8)-9p=27 | | p=130^2/24 | | X-1/3+x-2/5=5/3 | | 6x+2-9x=29 | | x=1+1/4 | | x=5-3x | | (4m+54)+(16-2m)=180 | | 8+3(x-7)=2x+15 | | -42x+6=-48 | | $-42x+6=-48$ | | 7x-3=12x | | (3x^2)+9=5-4x | | 840+17x=22x+760 | | 8+3((x-7)=2x+15 | | -63=-9(-9-4x) | | x=6+8 | | -6x+4-9x=-56 | | 3x^2+9=5-4x | | 3c=26 | | 26c=3 | | -15x+2=-33 | | 2x+15=2x+15=2x-15 | | 17w=119 |

Equations solver categories