4*1/6z=-2+5*2/3z

Simple and best practice solution for 4*1/6z=-2+5*2/3z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4*1/6z=-2+5*2/3z equation:



4*1/6z=-2+5*2/3z
We move all terms to the left:
4*1/6z-(-2+5*2/3z)=0
Domain of the equation: 6z!=0
z!=0/6
z!=0
z∈R
Domain of the equation: 3z)!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
4*1/6z-(5*2/3z-2)=0
We get rid of parentheses
4*1/6z-5*2/3z+2=0
We calculate fractions
36z/18z^2+(-360z)/18z^2+2=0
We multiply all the terms by the denominator
36z+(-360z)+2*18z^2=0
Wy multiply elements
36z^2+36z+(-360z)=0
We get rid of parentheses
36z^2+36z-360z=0
We add all the numbers together, and all the variables
36z^2-324z=0
a = 36; b = -324; c = 0;
Δ = b2-4ac
Δ = -3242-4·36·0
Δ = 104976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{104976}=324$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-324)-324}{2*36}=\frac{0}{72} =0 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-324)+324}{2*36}=\frac{648}{72} =9 $

See similar equations:

| 0,20y+24=y, | | 40x=66 | | 41/6z=-2+52/3z | | 0,3x=99 | | h6=9-4h/3 | | 1,4x=868 | | y/2+1=y/5+1/4 | | 0,6x=168 | | 26+2x=78 | | 12=18+1,2x | | 5a/4-7a/8=5a/6-5.5 | | 3.x-2=x+2 | | 2.x+1=x+5 | | 5.x-3=15 | | 3.x-1=9 | | 2.x+1=10 | | 1431=25.25x+150 | | 4x-(-9)=11 | | 0.5=1.12^x | | 0,3-25=5+0,1x | | 6m+-7=-7 | | q/26=9.5 | | 195=z-2.05 | | -5x+-6=19 | | x-10/5=-9 | | 4x-16=O | | 10+5x*4=60 | | 10+5xx4=60 | | 2x+2/10+x=1/5=7/15 | | (e+3)×5=40 | | -50+-5x=-105 | | 7x-9x=23 |

Equations solver categories