4+4+15-20=8x2-28

Simple and best practice solution for 4+4+15-20=8x2-28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4+4+15-20=8x2-28 equation:



4+4+15-20=8x^2-28
We move all terms to the left:
4+4+15-20-(8x^2-28)=0
We add all the numbers together, and all the variables
-(8x^2-28)+3=0
We get rid of parentheses
-8x^2+28+3=0
We add all the numbers together, and all the variables
-8x^2+31=0
a = -8; b = 0; c = +31;
Δ = b2-4ac
Δ = 02-4·(-8)·31
Δ = 992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{992}=\sqrt{16*62}=\sqrt{16}*\sqrt{62}=4\sqrt{62}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{62}}{2*-8}=\frac{0-4\sqrt{62}}{-16} =-\frac{4\sqrt{62}}{-16} =-\frac{\sqrt{62}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{62}}{2*-8}=\frac{0+4\sqrt{62}}{-16} =\frac{4\sqrt{62}}{-16} =\frac{\sqrt{62}}{-4} $

See similar equations:

| 2(x06)-4(x+2)=-12 | | 5x3=3x+3 | | -2x+7x-9=5(x-3)-6 | | -20+3+4x=7+8x-2 | | -20*3*4x=7+8x-2 | | 7x=12x-115 | | -2q+9=-3q+4 | | y=2×+5×-3 | | X^4-113x^2=-3136 | | 3/4a-22=-13 | | 360/x-360/x+4=3 | | 26-6x=12-4x | | 74=4y | | 13y+13y+5-13=12y*12y+7-3= | | 3w+31=-2(w+2) | | 3x^2-11+9=0 | | 54-10x=+7x | | 2x-13=8x+4-17 | | 6(w-1)=2w+18 | | x^2+4-28=0 | | -2y=2= | | x-270=x/5 | | 6+-7=2t+5 | | 2(14x-11)=40x-(2x-5) | | x-270=5x | | 22=9(5a+7) | | 7s-30=159 | | 9=v/3-15 | | 5t=-25 | | y+6y=63 | | x/5+8=38 | | 48=11w-3w |

Equations solver categories