4-(2x+3)=7x(2x+12)

Simple and best practice solution for 4-(2x+3)=7x(2x+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4-(2x+3)=7x(2x+12) equation:



4-(2x+3)=7x(2x+12)
We move all terms to the left:
4-(2x+3)-(7x(2x+12))=0
We get rid of parentheses
-2x-(7x(2x+12))-3+4=0
We calculate terms in parentheses: -(7x(2x+12)), so:
7x(2x+12)
We multiply parentheses
14x^2+84x
Back to the equation:
-(14x^2+84x)
We add all the numbers together, and all the variables
-2x-(14x^2+84x)+1=0
We get rid of parentheses
-14x^2-2x-84x+1=0
We add all the numbers together, and all the variables
-14x^2-86x+1=0
a = -14; b = -86; c = +1;
Δ = b2-4ac
Δ = -862-4·(-14)·1
Δ = 7452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7452}=\sqrt{324*23}=\sqrt{324}*\sqrt{23}=18\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-86)-18\sqrt{23}}{2*-14}=\frac{86-18\sqrt{23}}{-28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-86)+18\sqrt{23}}{2*-14}=\frac{86+18\sqrt{23}}{-28} $

See similar equations:

| 6x+63=13x | | 2h+8(-5h+7)=-4(-3h-2)-5 | | 3-|3m|=-12 | | x+0.0001=-3 | | 36w+145=443 | | 40=4(3x-8) | | 2(x-6)+5=2x-6 | | 0.04(y-9)+0.12y=0.10y-0.9 | | d-1.89=15.35 | | 6(x-2)+9=6x-3 | | 36=4n+8n | | D=15x20/2 | | X=3x+1-52 | | x2-6=-2 | | 3(x+2)-x=2x+2 | | x+8.11=0.002 | | -5(3x-15)=2(x-12)-3 | | 3x+9x+8=2(6x+) | | 72-w=252 | | -4s+4(-7-2s)=-5s-2s | | -3s+12=-48 | | 3(x+5)=4x-9+2x | | 7x+4=8+x | | 5.5x=5 | | w-3.9=1.41 | | Y=15x80 | | 9+3x=2(-x+3)-37 | | 6(-8x+7)=-54 | | f+3=13 | | w-3.9=1.4 | | 4.2=x+1.75 | | (7^2)^x=7^18 |

Equations solver categories