If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4-2(2.5x-8.5)=(x-3)(x-3)
We move all terms to the left:
4-2(2.5x-8.5)-((x-3)(x-3))=0
We multiply parentheses
-4x-((x-3)(x-3))+17+4=0
We multiply parentheses ..
-((+x^2-3x-3x+9))-4x+17+4=0
We calculate terms in parentheses: -((+x^2-3x-3x+9)), so:We add all the numbers together, and all the variables
(+x^2-3x-3x+9)
We get rid of parentheses
x^2-3x-3x+9
We add all the numbers together, and all the variables
x^2-6x+9
Back to the equation:
-(x^2-6x+9)
-4x-(x^2-6x+9)+21=0
We get rid of parentheses
-x^2-4x+6x-9+21=0
We add all the numbers together, and all the variables
-1x^2+2x+12=0
a = -1; b = 2; c = +12;
Δ = b2-4ac
Δ = 22-4·(-1)·12
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{13}}{2*-1}=\frac{-2-2\sqrt{13}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{13}}{2*-1}=\frac{-2+2\sqrt{13}}{-2} $
| 1123+x=2000 | | 4x/4=16/4 | | 1/4y+2=1/5y | | 30+60=x | | 50=5(4e-2) | | R(x)=9× | | 6(2v+1)=6 | | 3(x+16)=4(x+18) | | 1/2a-9=11 | | 57x=2565 | | 5(x+2)^2=45 | | T=3(2a+4)+2(a+6) | | 3-5x=1-2x+1-2 | | 29x+30=29x+38 | | 14x28=28x-70 | | 3x/2+1/4+2=3x/4-x/3 | | 23x-12=16+51 | | 7x-7=140 | | 4^c=1^1 | | 18+2(3x+1)=32 | | 25+20n=125 | | 4^c=1 | | 7x+3/4+3=4x+9 | | 9+x-5=6x5 | | 3x+14=90-x | | 0,4x+6,2=0,4(2x-18,4) | | E=t2–6t+9 | | -11v-8v+3v=24 | | -1/1=1/3v | | 4+5(x-11)3,x=8 | | 2(x-6)=-20 | | -6x+15+9x=60 |