If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4-9z^2=0
a = -9; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-9)·4
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*-9}=\frac{-12}{-18} =2/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*-9}=\frac{12}{-18} =-2/3 $
| -3x+1/3=2/3 | | 53n=221 | | -6/q=3 | | -10=14v+14v+2v | | (7a+3)+(-1a-5)=15 | | -6x+2=-7x=10 | | b/5+9=-6 | | -3=v-2 | | -4=4(d-19) | | 7x-(3x+5)-8=1/2+10-7x+5 | | 0.2(x-4)=3.0 | | 9(2n-2)=(6n+7)+6 | | X(t)=2t2-20t+18 | | 10x^2+8x-1000=0 | | 6(x+3)+x=3(x+5)+7 | | 15=n+3+2n | | x/2+5=5 | | (3x-1)-(x+6)=-5/(1-3x)^2 | | x+3.75=11/(1/3 | | 24=2+w | | 15=3n-1+1 | | x^2+x=18.5 | | 3/7w-11=-4/4 | | -3(2x-3)=–6x+9 | | 3x-5x=-20 | | -4(t-5)+7t=9t-3 | | 6400=(400+w)•16/3 | | 6^3m=36 | | -m6=10 | | 2p-3p=-3 | | 0.60x+0.60(100)=0.30(114) | | 3(x)=2x^2-5x+1 |