If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+340t-2720=0
a = 4.9; b = 340; c = -2720;
Δ = b2-4ac
Δ = 3402-4·4.9·(-2720)
Δ = 168912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168912}=\sqrt{144*1173}=\sqrt{144}*\sqrt{1173}=12\sqrt{1173}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(340)-12\sqrt{1173}}{2*4.9}=\frac{-340-12\sqrt{1173}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(340)+12\sqrt{1173}}{2*4.9}=\frac{-340+12\sqrt{1173}}{9.8} $
| y=3^2-3 | | x²-500x+100=0 | | y=-3^2-3 | | 4x=552 | | -10=-5x–25 | | B=9b | | -24x=2256 | | 0.89=w/9-(-0.14) | | 1776=-2x | | -5x=1530 | | 4x+4(3x+4)=48 | | 231=3x | | 5x-45=12x-80 | | x-4=-4x+6 | | X-12y=-9 | | -x+7=4x+2 | | 2x=912 | | 7m-15=32 | | −9−(9x−6)=3(4x+6) | | (4x-1)+2x-7=90 | | 9x-1=2x+55 | | 5x-4.1=6.7-4.5x | | (x+2)(X-1)(X+1)=0.16 | | 13=4c−5 | | 3x÷5=18 | | 4=2x+-4 | | 30=3.14*(r*r) | | 6y+-5=11 | | 13y+25+8y+5=50 | | -5+10x=4 | | 10+8x=-62 | | 4x/4=-1x |