If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+9.8t-39.2=0
a = 4.9; b = 9.8; c = -39.2;
Δ = b2-4ac
Δ = 9.82-4·4.9·(-39.2)
Δ = 864.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9.8)-\sqrt{864.36}}{2*4.9}=\frac{-9.8-\sqrt{864.36}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9.8)+\sqrt{864.36}}{2*4.9}=\frac{-9.8+\sqrt{864.36}}{9.8} $
| 20-(2x-9)-2=-(-11x+1) | | 50=1+2n+26 | | 2(x+5)+3x-10=5 | | -8/5h=-9 | | 4.6x=32.2 | | 5^4x=25^3x+2 | | 17.38=3g+3.73 | | 6+8n=-(-5n-6)+3n | | 14.8/6.2=17.2/y | | 15+1/2x=30-3x | | 9a+14=23 | | 11+3x-7=6(x+5)-2x | | 8(w+3)+2=42 | | 5+2x-5x=-7 | | 3x+5+7x=45 | | 19-(x+3)=17 | | 9r-3=-165 | | 11+2x=6x-5 | | 14.8/16.2=17.2/y | | x/3-4+x/6=10 | | 114=(x+2)5-3x | | 2e+1=7 | | 3-2x+5x=24 | | -4(x-2)=3(x-1) | | 8r+1=8r | | 5(7x+2)=325 | | 2x-5x=2x-10 | | 36+3x=11x+40 | | 6z=15 | | 2)3(4x+2)-4=26 | | 12-3(2x+1=7x-3(7+x) | | -4(r+2)=51 |