If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-15t+7=0
a = 4.9; b = -15; c = +7;
Δ = b2-4ac
Δ = -152-4·4.9·7
Δ = 87.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{87.8}}{2*4.9}=\frac{15-\sqrt{87.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{87.8}}{2*4.9}=\frac{15+\sqrt{87.8}}{9.8} $
| 2x-134=5 | | 2310=1*x+2*x+4*x+8*x+16*x+32*x+64*x+128*x+256*x+512*x | | 28/r=1.427 | | 4x+2x=3x-35 | | 4x+2x=3x+35 | | .9*x=13.2 | | 2v=-30 | | 4x-2x=3x+35 | | 75-x+60.2=x | | 3x+20=55 | | -2v-6=-16 | | x+0.12x=168 | | 15x+6=6x+6 | | 2x-3x+4X=8 | | 27-8x=5 | | 2(x+7)=8+2x | | 3+7+x=8-1 | | 13x-(3x-9)=19 | | 27-a=5 | | 27-8a=5 | | 7(x+3)=4(x-(7-x)) | | 8(5c-2)=10(32-4c) | | 18-6x=-72 | | x+(x-26)+(x+2)=180 | | 2x²+2x-312=0 | | x/2=x/9+9/2 | | b/3-10=-2 | | b/3-10=-5 | | 1/4(8x-12)=1/5(15x-10) | | -(x-6)-(x-2)=x+6 | | 1/3(x-9)-1/9(x-9)=x-8 | | x=42x^2-476x-2462 |