If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-3.1t-13=0
a = 4.9; b = -3.1; c = -13;
Δ = b2-4ac
Δ = -3.12-4·4.9·(-13)
Δ = 264.41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3.1)-\sqrt{264.41}}{2*4.9}=\frac{3.1-\sqrt{264.41}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3.1)+\sqrt{264.41}}{2*4.9}=\frac{3.1+\sqrt{264.41}}{9.8} $
| 4m-4(3+7m)=-2m+32 | | 6(x-2)/8=3(x+3)/9 | | h2=0 | | 8m^2-104+336=0 | | -7x25=2x+11 | | 2(6-3n)=14-5n | | g2-121=0 | | 2(x-1)3(x+1)=4(x-2) | | -3(r+7)=-23-2r | | 4*(7,5-1,25*y)+5y=30 | | 3+x/2+x+7/2=3x+1 | | 8m^2-104m+336=0 | | 9/5+3p=2 | | 16-2a=8(a-8) | | 6x=√6 | | q-3/2=3 | | (3x-2)(2x+5)-5(3x-2)=0 | | 0.5x-4=3(9x-21) | | 15750x+180=0 | | -10x-14=100 | | 15,750x+180=0 | | 0.5x-4=(9x-21) | | 9(x+5)=2(18)-2(x+6) | | 7(3x-4)=-32 | | (x+1)/3=5/(x-1) | | 7/5x=8/5 | | 4(-8+8n)=7-7n | | w^2−5w=24 | | 4.9t2-5t-21=0 | | 5x+37=90 | | -2.3x=36.34 | | 2x/5+x-4/6=4x+1/4+2 |