If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-340x+2720=0
a = 4.9; b = -340; c = +2720;
Δ = b2-4ac
Δ = -3402-4·4.9·2720
Δ = 62288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-340)-\sqrt{62288}}{2*4.9}=\frac{340-\sqrt{62288}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-340)+\sqrt{62288}}{2*4.9}=\frac{340+\sqrt{62288}}{9.8} $
| 5=3+a/5 | | f/9− 1=4 | | f/9−1=4 | | 24x+12-2x=2(x-5)-5 | | 4f2–47f–12=0 | | (3m+1)(2m+4)=180 | | 6x+6=12x+ | | 8(2t+1)-(t-9)=52-8- | | 17x^2+40x+24=0 | | 240=92-v | | 3-2+4x-8=2 | | -21=-5c+2c | | 5(u+6)=45 | | 2.4{x+4}=21.9 | | 5-15x=14x | | 45-v=202 | | 3+2x=1+0x | | 2-6x+4+x=-11 | | -6x-8=70 | | .25x+4=10 | | 11/2{n-41/2}=12 | | 24=5d+3d | | x^2=-0.01 | | 53=-u+256 | | 3n-8=2n+4 | | 2(8a−27)+35=−14a+41 | | 2(8a−27)+35=−14a+41. | | 19-(3-5b)=21 | | 19-(3-5b(=21 | | 5n+10=5(n-3 | | -28=-7e | | 8x-6+2=2x-1(4-6x) |