If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/(3x+6)-2/3x=1/(x+2)
We move all terms to the left:
4/(3x+6)-2/3x-(1/(x+2))=0
Domain of the equation: (3x+6)!=0
We move all terms containing x to the left, all other terms to the right
3x!=-6
x!=-6/3
x!=-2
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: (x+2))!=0We calculate fractions
x∈R
(12x^2*()/((3x+6)*3x*(x+2)))+(-2*(3x+6)*(x+2)))/((3x+6)*3x*(x+2)))+(-(1*(3x+6)*3x)/((3x+6)*3x*(x+2)))=0
We calculate terms in parentheses: +(12x^2*()/((3x+6)*3x*(x+2))), so:
12x^2*()/((3x+6)*3x*(x+2))
We multiply all the terms by the denominator
12x^2*()
Back to the equation:
+(12x^2*())
We calculate terms in parentheses: +(-2*(3x+6)*(x+2)))/((3x+6)*3x*(x+2)))+(-(1*(3x+6)*3x)/((3x+6)*3x*(x+2))), so:
-2*(3x+6)*(x+2)))/((3x+6)*3x*(x+2)))+(-(1*(3x+6)*3x)/((3x+6)*3x*(x+2))
We add all the numbers together, and all the variables
-2*(3x+6)*(x+2)))/((3x+6)*3x*(x+2)))+(-(1*(3x+6)*3x)/((3x+6)*3x*(x
We multiply all the terms by the denominator
-2*(3x+6)*(x+2)))+6*3x*x*((3x+2))+(-(1*3x*((3x+6)*3x)+6*3x*x*((3x
Wy multiply elements
18x^3*x-2*(3x+6)*(x+2)))+6*3x*x*((3x+2))+(-(1*3x*((3x+6)*3x)
We do not support expression: x^3
See similar equations:
| 11.6j=-0.76+4j | | 3x-(2x-5)=-4 | | 8−n=3n | | ×+x+23^x=180 | | 2(x*x)-11x-28=0 | | 10-(5x+5)=-20 | | 18.8r+9.02=17r-17.98 | | 3x−3x−2=A⋅3x | | v/4+2.3=-4.1 | | 9-(12+3x)=15 | | 14+2-6p=-8-14p | | /4x+6=2x-8 | | 297=7(8x+6)=3 | | 7x+91=20 | | 7+3.25x=29 | | -19u=-18u+10 | | 1b+7=7 | | 4.25x÷8=9 | | (3x-7)=(5x+4)=(8x+7) | | 2x-(9x+4)=-25 | | 4.25x+7=24 | | -(4+h)=3h− | | -16.9y-3.3=-8.08-18.46-18.3y | | (3x-7)=(5x+4) | | 28–5.25x=2.75 | | 16=n/3+5 | | 2/5r-5=2 | | 3x−7=5x+4 | | 5x=-(-6)+9+8x | | -3-6m=-18-9m | | 6x=10+70+4x | | –2(a+4)=18 |