4/(5*x)+1/10=3/(2*x)

Simple and best practice solution for 4/(5*x)+1/10=3/(2*x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/(5*x)+1/10=3/(2*x) equation:



4/(5x)+1/10=3/(2x)
We move all terms to the left:
4/(5x)+1/10-(3/(2x))=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
4/5x-(+3/2x)+1/10=0
We get rid of parentheses
4/5x-3/2x+1/10=0
We calculate fractions
20x^2/100x^2+80x/100x^2+(-150x)/100x^2=0
We multiply all the terms by the denominator
20x^2+80x+(-150x)=0
We get rid of parentheses
20x^2+80x-150x=0
We add all the numbers together, and all the variables
20x^2-70x=0
a = 20; b = -70; c = 0;
Δ = b2-4ac
Δ = -702-4·20·0
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4900}=70$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-70}{2*20}=\frac{0}{40} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+70}{2*20}=\frac{140}{40} =3+1/2 $

See similar equations:

| X^2-676x+57600=0 | | -3(5x+2)=5(3x-6) | | 4/5x+1/10=3/2x | | (2x)+(3x)+(x+15)+(3x-30)=360 | | 4(3x+20-18=14 | | 6.7=(-2.3)x | | 12x-5=-5x+15 | | 2x-9=7x+3 | | 8x–10=26 | | 5(3w+6)/3=9 | | 8+3/y=19/y | | 1-4x-20=2 | | 5x+4x-99=12x | | n/4+3=5 | | 7x-12x=14x+6 | | 6(2m-5)=54 | | 2+4n=2 | | 49=8y-y | | 8-7x-2=-36+4x-13 | | 3x-10=4x+20 | | 30=-y+245 | | n-5.5=15 | | -2x+4=6x-12 | | 170-w=40 | | 2(x-1/2)=8=2x | | 2(3a-5)=8 | | u2+2u–15=0 | | 1x=-11x | | -8(2x-9)=20-+12x | | 7(3w+2)/3=-5 | | 197=17-w | | 28-y=6y |

Equations solver categories