If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/(x+2)+6=14/2x+4
We move all terms to the left:
4/(x+2)+6-(14/2x+4)=0
Domain of the equation: (x+2)!=0
We move all terms containing x to the left, all other terms to the right
x!=-2
x∈R
Domain of the equation: 2x+4)!=0We get rid of parentheses
x∈R
4/(x+2)-14/2x-4+6=0
We calculate fractions
8x/(2x^2+4x)+(-14x-28)/(2x^2+4x)-4+6=0
We add all the numbers together, and all the variables
8x/(2x^2+4x)+(-14x-28)/(2x^2+4x)+2=0
We multiply all the terms by the denominator
8x+(-14x-28)+2*(2x^2+4x)=0
We multiply parentheses
4x^2+8x+(-14x-28)+8x=0
We get rid of parentheses
4x^2+8x-14x+8x-28=0
We add all the numbers together, and all the variables
4x^2+2x-28=0
a = 4; b = 2; c = -28;
Δ = b2-4ac
Δ = 22-4·4·(-28)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{113}}{2*4}=\frac{-2-2\sqrt{113}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{113}}{2*4}=\frac{-2+2\sqrt{113}}{8} $
| 45.28=19.83y | | 2r+12(19)=8(5r-1) | | 41.6=3x | | -3(x+5)-42=4-37 | | 32=-16x^2+35x+20 | | 5q^2=0 | | 96+4x=0+12x | | -17=-5x+8 | | 4(r+1/2)=12 | | 21+0.35p=56 | | 5k+12=13 | | k8=10 | | -2x+10=-30 | | X+13=44;x | | 3x-5x+8x=14 | | 2/3k=8+18 | | (y+34)+(y+34)=4y+8 | | 18+9x+27=90 | | 18x=10-(-8) | | 10b^2=5b | | 18+9x+27=360 | | 10^b=5b | | 4w-14w=-30 | | -35=-7/9u | | 7r^2-5r+5=5 | | 3.5(x-2)=14 | | 9.5m=-66.5 | | -24+5n=2n=24 | | 19.73+x=37.73 | | 10p−9p=13 | | 1.75p+0.25=4.25 | | 0=-3x^2+8x-4 |