If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/15y+5/6y+1/2=8/5
We move all terms to the left:
4/15y+5/6y+1/2-(8/5)=0
Domain of the equation: 15y!=0
y!=0/15
y!=0
y∈R
Domain of the equation: 6y!=0We add all the numbers together, and all the variables
y!=0/6
y!=0
y∈R
4/15y+5/6y+1/2-(+8/5)=0
We get rid of parentheses
4/15y+5/6y+1/2-8/5=0
We calculate fractions
(-8640y^2)/1800y^2+2700y^2/1800y^2+480y/1800y^2+1500y/1800y^2=0
We multiply all the terms by the denominator
(-8640y^2)+2700y^2+480y+1500y=0
We add all the numbers together, and all the variables
2700y^2+(-8640y^2)+1980y=0
We get rid of parentheses
2700y^2-8640y^2+1980y=0
We add all the numbers together, and all the variables
-5940y^2+1980y=0
a = -5940; b = 1980; c = 0;
Δ = b2-4ac
Δ = 19802-4·(-5940)·0
Δ = 3920400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3920400}=1980$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1980)-1980}{2*-5940}=\frac{-3960}{-11880} =1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1980)+1980}{2*-5940}=\frac{0}{-11880} =0 $
| x+x^2+42=0 | | 4x-2+X-3x=5+x | | 2x-x^2-x=0 | | 4x-2+x-3x=5+3 | | 4x-5=7x=10 | | .5+h+2=2 | | 18+3x+x^=0 | | 5x+4=20× | | 1/2*h+2=2 | | 6x-x+2x=10 | | 3-x+x+x=9 | | 6x-x+x+x=9 | | 3x+4=2(x1) | | 2x+10=-6x+55 | | 2x+3=3/4 | | 3(2t-5)+7=t-4 | | 3(2+-5)+7=t-4 | | 10*0.009=n | | 12+x=4x/5 | | 4(y+2)=7(2y-1) | | 7x+4=135 | | 2.3y+3.2-y=+2.1+1.3y+1.1 | | 4x+12=20+x | | y=-4(3/8)+2 | | 2700=y*0,6 | | (x+4)x(x-1)=104 | | -2x+38=x+11 | | 152-x=204 | | 10x+6–3x=8 | | F(x)=0,5x | | 6=3y+4y×y | | 6^(b-7)=36 |