4/3x-2(9-1/3x)=-7/3x=9

Simple and best practice solution for 4/3x-2(9-1/3x)=-7/3x=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/3x-2(9-1/3x)=-7/3x=9 equation:



4/3x-2(9-1/3x)=-7/3x=9
We move all terms to the left:
4/3x-2(9-1/3x)-(-7/3x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
4/3x-2(-1/3x+9)-(-7/3x)=0
We multiply parentheses
4/3x+2x-(-7/3x)-18=0
We get rid of parentheses
4/3x+2x+7/3x-18=0
We multiply all the terms by the denominator
2x*3x-18*3x+4+7=0
We add all the numbers together, and all the variables
2x*3x-18*3x+11=0
Wy multiply elements
6x^2-54x+11=0
a = 6; b = -54; c = +11;
Δ = b2-4ac
Δ = -542-4·6·11
Δ = 2652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2652}=\sqrt{4*663}=\sqrt{4}*\sqrt{663}=2\sqrt{663}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{663}}{2*6}=\frac{54-2\sqrt{663}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{663}}{2*6}=\frac{54+2\sqrt{663}}{12} $

See similar equations:

| 3x-2+2x+1=180 | | 4(b-59)=68 | | 14x-15+90=180 | | 4(3+c)+c=c4 | | 3-2.7(8-x)=166.5 | | t/4-8=7 | | 5-2x=17.6 | | 236532+218342x=215325 | | 2h+9=19 | | b2+b−56=0 | | (6x-6)+(7x+1)=180 | | 9x=-7+7 | | (-2x-4)/5+8/5=3(x-1 | | 2x+27+14x-15=180 | | 5-c/2=25 | | -11x=76 | | 10x-19=7x+4 | | -2+(2/x)=x-3 | | 5c+3.4=8 | | b-7=63 | | 72+3p=-153 | | 0.25x(x+12)=4+0.75x(x-16) | | 4+2(x+1)=x+16 | | n=9(0.6)-6 | | (36p+36)+3p=-153 | | 28x+16x=48 | | 14t-8=6t+0 | | m=4(0.6)-3 | | 36p+36)+3p=-153 | | 9x−9=9(x−1)+14 | | 5p=7=9p=-21 | | 2(x+3)-7(8-x)=4 |

Equations solver categories